Epistemic planning for multi-robot systems in communication-restricted environments

计算机科学 机器人 规划师 集合(抽象数据类型) 国家(计算机科学) 人机交互 人工智能 代表(政治) 情境演算 算法 政治学 政治 程序设计语言 法学
作者
Lauren Bramblett,Nicola Bezzo
出处
期刊:Frontiers in Robotics and AI [Frontiers Media SA]
卷期号:10
标识
DOI:10.3389/frobt.2023.1149439
摘要

Many real-world robotic applications such as search and rescue, disaster relief, and inspection operations are often set in unstructured environments with a restricted or unreliable communication infrastructure. In such environments, a multi-robot system must either be deployed to i) remain constantly connected, hence sacrificing operational efficiency or ii) allow disconnections considering when and how to regroup. In communication-restricted environments, we insist that the latter approach is desired to achieve a robust and predictable method for cooperative planning. One of the main challenges in achieving this goal is that optimal planning in partially unknown environments without communication requires an intractable sequence of possibilities. To solve this problem, we propose a novel epistemic planning approach for propagating beliefs about the system’s states during communication loss to ensure cooperative operations. Typically used for discrete multi-player games or natural language processing, epistemic planning is a powerful representation of reasoning through events, actions, and belief revisions, given new information. Most robot applications use traditional planning to interact with their immediate environment and only consider knowledge of their own state. By including an epistemic notion in planning, a robot may enact depth-of-reasoning about the system’s state, analyzing its beliefs about each robot in the system. In this method, a set of possible beliefs about other robots in the system are propagated using a Frontier-based planner to accomplish the coverage objective. As disconnections occur, each robot tracks beliefs about the system state and reasons about multiple objectives: i) coverage of the environment, ii) dissemination of new observations, and iii) possible information sharing from other robots. A task allocation optimization algorithm with gossip protocol is used in conjunction with the epistemic planning mechanism to locally optimize all three objectives, considering that in a partially unknown environment, the belief propagation may not be safe or possible to follow and that another robot may be attempting an information relay using the belief state. Results indicate that our framework performs better than the standard solution for communication restrictions and even shows similar performance to simulations with no communication limitations. Extensive experiments provide evidence of the framework’s performance in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿月浑子完成签到,获得积分10
刚刚
QQ完成签到 ,获得积分20
刚刚
小鹿斑比完成签到 ,获得积分10
刚刚
小果叮发布了新的文献求助10
刚刚
Zczzx发布了新的文献求助10
1秒前
cff完成签到,获得积分10
2秒前
2秒前
研友_LNoAMn发布了新的文献求助20
2秒前
天高任鸟飞完成签到,获得积分10
3秒前
jia关注了科研通微信公众号
3秒前
Ryuu完成签到,获得积分10
4秒前
我是老大应助窝窝头采纳,获得10
4秒前
wh完成签到,获得积分10
4秒前
wanci应助imi采纳,获得10
5秒前
万幸鹿发布了新的文献求助10
6秒前
QQ关注了科研通微信公众号
7秒前
范仪彬完成签到,获得积分20
7秒前
搜集达人应助shidewu采纳,获得10
8秒前
qq发布了新的文献求助10
8秒前
9秒前
10秒前
迫切发布了新的文献求助10
10秒前
CipherSage应助孤独靖柏采纳,获得10
14秒前
修仙应助SongRD采纳,获得10
14秒前
情怀应助爱喝水采纳,获得10
15秒前
15秒前
酷波er应助淡然采纳,获得10
15秒前
renjiancihua发布了新的文献求助10
16秒前
16秒前
Creamai发布了新的文献求助10
19秒前
20秒前
我是老大应助复杂数据线采纳,获得10
21秒前
WAYNE完成签到,获得积分10
21秒前
满眼月月完成签到,获得积分10
21秒前
21秒前
研途者完成签到,获得积分10
22秒前
24秒前
24秒前
研友_8oBxrZ发布了新的文献求助10
25秒前
孤独靖柏发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149808
求助须知:如何正确求助?哪些是违规求助? 2800840
关于积分的说明 7842296
捐赠科研通 2458378
什么是DOI,文献DOI怎么找? 1308434
科研通“疑难数据库(出版商)”最低求助积分说明 628510
版权声明 601721