A deep-learning model using enhanced chest CT images to predict PD-L1 expression in non-small-cell lung cancer patients

医学 置信区间 肺癌 免疫疗法 肿瘤科 癌症 内科学 放射科 比例危险模型 队列
作者
Ping Liu,Bao Feng,Jufang Shi,Feng Hou,Zheng Hu,Y.H. Chen,J.P. Zhang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:78 (10): e689-e697 被引量:2
标识
DOI:10.1016/j.crad.2023.05.010
摘要

•Immunotherapy brings new hope for lung cancer patients. •The early detection of PD-L1 is very important for making immunotherapy regimen. •The novel noninvasive DLRM model can differentiate PD-L1 expression <1% and ≥1%. AIM To develop a deep-learning model using contrast-enhanced chest computed tomography (CT) images to predict programmed death-ligand 1 (PD-L1) expression in patients with non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS Preoperative enhanced chest CT images and immunohistochemistry results for PD-L1 expression (<1% and ≥1% were defined as negative and positive, respectively) were collected retrospectively from 125 NSCLC patients to train and validate a deep-learning radiomics model (DLRM) for the prediction of PD-L1 expression in tumours. The DLRM was developed by combining the deep-learning signature (DLS) obtained from a convolutional neural network and clinicopathological factors. The indexes of the area under the curve (AUC), integrated discrimination improvement (IDI), and decision curve analysis (DCA) were used to evaluate the efficiency of the DLRM. RESULTS DLS and tumour stage were identified as independent predictors of PD-L1 expression by the DLRM. The AUCs of the DLRM were 0.804 (95% confidence interval: 0.697–0.911) and 0.804 (95% confidence interval: 0.679–0.929) in the training and validation cohorts, respectively. IDI analysis showed the DLRM had better diagnostic accuracy than DLS (0.0028 [p<0.05]) in the validation cohort. Additionally, DCA revealed that the DLRM had more net benefit than the DLS for clinical utility. CONCLUSION The proposed DLRM using enhanced chest CT images could function as a non-invasive diagnostic tool to differentiate PD-L1 expression in NSCLC patients. To develop a deep-learning model using contrast-enhanced chest computed tomography (CT) images to predict programmed death-ligand 1 (PD-L1) expression in patients with non-small-cell lung cancer (NSCLC). Preoperative enhanced chest CT images and immunohistochemistry results for PD-L1 expression (<1% and ≥1% were defined as negative and positive, respectively) were collected retrospectively from 125 NSCLC patients to train and validate a deep-learning radiomics model (DLRM) for the prediction of PD-L1 expression in tumours. The DLRM was developed by combining the deep-learning signature (DLS) obtained from a convolutional neural network and clinicopathological factors. The indexes of the area under the curve (AUC), integrated discrimination improvement (IDI), and decision curve analysis (DCA) were used to evaluate the efficiency of the DLRM. DLS and tumour stage were identified as independent predictors of PD-L1 expression by the DLRM. The AUCs of the DLRM were 0.804 (95% confidence interval: 0.697–0.911) and 0.804 (95% confidence interval: 0.679–0.929) in the training and validation cohorts, respectively. IDI analysis showed the DLRM had better diagnostic accuracy than DLS (0.0028 [p<0.05]) in the validation cohort. Additionally, DCA revealed that the DLRM had more net benefit than the DLS for clinical utility. The proposed DLRM using enhanced chest CT images could function as a non-invasive diagnostic tool to differentiate PD-L1 expression in NSCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助黑小虎采纳,获得10
2秒前
韩十四完成签到,获得积分10
2秒前
CNSSCI完成签到,获得积分10
2秒前
wang完成签到,获得积分10
3秒前
uu发布了新的文献求助10
3秒前
jensen应助翻翻CHEN采纳,获得10
3秒前
万能图书馆应助研友_VZGvVn采纳,获得10
6秒前
周凡淇发布了新的文献求助10
7秒前
缺了一口的巧克力蛋挞完成签到 ,获得积分10
9秒前
ab完成签到,获得积分10
9秒前
money发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
111发布了新的文献求助10
12秒前
bkagyin应助xuleiman采纳,获得10
13秒前
毕业就集采的苦命人完成签到,获得积分10
13秒前
研友_VZGvVn发布了新的文献求助10
17秒前
柯米发布了新的文献求助10
17秒前
18秒前
uu完成签到,获得积分10
19秒前
SSS完成签到,获得积分10
19秒前
CodeCraft应助热心的邪欢采纳,获得10
19秒前
20秒前
王哈哈完成签到,获得积分10
20秒前
喝水长肉的小胖子关注了科研通微信公众号
21秒前
orixero应助你眼带笑采纳,获得10
21秒前
研友_VZGvVn完成签到,获得积分10
21秒前
是娟juan呀发布了新的文献求助10
23秒前
xuleiman发布了新的文献求助10
23秒前
AU发布了新的文献求助10
24秒前
上官若男应助111采纳,获得10
24秒前
24秒前
田様应助Yara.H采纳,获得10
25秒前
汎影发布了新的文献求助10
26秒前
27秒前
仁谷居士完成签到 ,获得积分10
28秒前
爱艺斯坦完成签到,获得积分10
28秒前
29秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124688
求助须知:如何正确求助?哪些是违规求助? 2775052
关于积分的说明 7725125
捐赠科研通 2430553
什么是DOI,文献DOI怎么找? 1291228
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323