A deep-learning model using enhanced chest CT images to predict PD-L1 expression in non-small-cell lung cancer patients

医学 置信区间 肺癌 免疫疗法 肿瘤科 癌症 内科学 放射科 比例危险模型 队列
作者
Ping Liu,Bao Feng,Jufang Shi,Feng Hou,Zheng Hu,Y.H. Chen,J.P. Zhang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:78 (10): e689-e697 被引量:2
标识
DOI:10.1016/j.crad.2023.05.010
摘要

•Immunotherapy brings new hope for lung cancer patients. •The early detection of PD-L1 is very important for making immunotherapy regimen. •The novel noninvasive DLRM model can differentiate PD-L1 expression <1% and ≥1%. AIM To develop a deep-learning model using contrast-enhanced chest computed tomography (CT) images to predict programmed death-ligand 1 (PD-L1) expression in patients with non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS Preoperative enhanced chest CT images and immunohistochemistry results for PD-L1 expression (<1% and ≥1% were defined as negative and positive, respectively) were collected retrospectively from 125 NSCLC patients to train and validate a deep-learning radiomics model (DLRM) for the prediction of PD-L1 expression in tumours. The DLRM was developed by combining the deep-learning signature (DLS) obtained from a convolutional neural network and clinicopathological factors. The indexes of the area under the curve (AUC), integrated discrimination improvement (IDI), and decision curve analysis (DCA) were used to evaluate the efficiency of the DLRM. RESULTS DLS and tumour stage were identified as independent predictors of PD-L1 expression by the DLRM. The AUCs of the DLRM were 0.804 (95% confidence interval: 0.697–0.911) and 0.804 (95% confidence interval: 0.679–0.929) in the training and validation cohorts, respectively. IDI analysis showed the DLRM had better diagnostic accuracy than DLS (0.0028 [p<0.05]) in the validation cohort. Additionally, DCA revealed that the DLRM had more net benefit than the DLS for clinical utility. CONCLUSION The proposed DLRM using enhanced chest CT images could function as a non-invasive diagnostic tool to differentiate PD-L1 expression in NSCLC patients. To develop a deep-learning model using contrast-enhanced chest computed tomography (CT) images to predict programmed death-ligand 1 (PD-L1) expression in patients with non-small-cell lung cancer (NSCLC). Preoperative enhanced chest CT images and immunohistochemistry results for PD-L1 expression (<1% and ≥1% were defined as negative and positive, respectively) were collected retrospectively from 125 NSCLC patients to train and validate a deep-learning radiomics model (DLRM) for the prediction of PD-L1 expression in tumours. The DLRM was developed by combining the deep-learning signature (DLS) obtained from a convolutional neural network and clinicopathological factors. The indexes of the area under the curve (AUC), integrated discrimination improvement (IDI), and decision curve analysis (DCA) were used to evaluate the efficiency of the DLRM. DLS and tumour stage were identified as independent predictors of PD-L1 expression by the DLRM. The AUCs of the DLRM were 0.804 (95% confidence interval: 0.697–0.911) and 0.804 (95% confidence interval: 0.679–0.929) in the training and validation cohorts, respectively. IDI analysis showed the DLRM had better diagnostic accuracy than DLS (0.0028 [p<0.05]) in the validation cohort. Additionally, DCA revealed that the DLRM had more net benefit than the DLS for clinical utility. The proposed DLRM using enhanced chest CT images could function as a non-invasive diagnostic tool to differentiate PD-L1 expression in NSCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叫滚滚发布了新的文献求助10
1秒前
星瑆心完成签到,获得积分10
1秒前
啦啦啦啦啦完成签到,获得积分10
2秒前
Lyg发布了新的文献求助10
2秒前
Dksido完成签到,获得积分10
3秒前
兰博基尼奥完成签到,获得积分10
3秒前
热情芷荷发布了新的文献求助10
5秒前
random完成签到,获得积分10
6秒前
6秒前
果果瑞宁完成签到,获得积分10
6秒前
7秒前
机智小虾米完成签到,获得积分20
7秒前
goldenfleece完成签到,获得积分10
8秒前
科研通AI2S应助学者采纳,获得10
8秒前
小杨完成签到,获得积分10
9秒前
sutharsons应助科研通管家采纳,获得30
10秒前
10秒前
Ava应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得30
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得30
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
Eric_Lee2000应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
王子完成签到,获得积分10
11秒前
李繁蕊发布了新的文献求助10
12秒前
诚心的大碗应助明理念桃采纳,获得20
12秒前
13秒前
meng完成签到,获得积分10
13秒前
学者完成签到,获得积分10
13秒前
英俊的铭应助愉快盼曼采纳,获得10
14秒前
14秒前
小媛完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808