材料科学
法拉第效率
离子
钾
碱金属
极化(电化学)
钠
化学工程
电池(电)
阳极
电极
冶金
热力学
化学
功率(物理)
物理
有机化学
物理化学
工程类
作者
Sonjoy Dey,Gurpreet Singh
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2023-06-19
卷期号:34 (38): 385401-385401
被引量:4
标识
DOI:10.1088/1361-6528/acdf66
摘要
The superior properties, such as large interlayer spacing and the ability to host large alkali-metal ions, of two-dimensional (2D) materials based on transition metal di-chalcogenides (TMDs) enable next-generation battery development beyond lithium-ion rechargeable batteries. In addition, compelling but rarely inspected TMD alloys provide additional opportunities to tailor bandgap and enhance thermodynamic stability. This study explores the sodium-ion (Na-ion) and potassium-ion (K-ion) storage behavior of cation-substituted molybdenum tungsten diselenide (MoWSe2), a TMD alloy. This research also investigates upper potential suspension to overcome obstacles commonly associated with TMD materials, such as capacity fading at high current rates, prolonged cycling conditions, and voltage polarization during conversion reaction. The voltage cut-off was restricted to 1.5 V, 2.0 V, and 2.5 V to realize the material's Na+and K+ion storage behavior. Three-dimensional (3D) surface plots of differential capacity analysis up to prolonged cycles revealed the convenience of voltage suspension as a viable method for structural preservation. Moreover, the cells with higher potential cut-off values conveyed improved cycling stability, higher and stable coulombic efficiency for Na+and K+ion half-cells, and increased capacity retention for Na+ion half-cells, respectively, with half-cells cycled at higher voltage ranges.
科研通智能强力驱动
Strongly Powered by AbleSci AI