亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Compressive sensing of ultrasonic array data with full matrix capture in nozzle welds inspection

匹配追踪 压缩传感 喷嘴 相控阵 计算机科学 声学 压缩空气 基质(化学分析) 无损检测 超声波传感器 希尔伯特-黄变换 数据采集 信号重构 算法 材料科学 信号处理 计算机视觉 机械工程 计算机硬件 工程类 物理 电信 滤波器(信号处理) 量子力学 数字信号处理 天线(收音机) 复合材料 操作系统
作者
Qian Xu,Haitao Wang,Guohui Tian,Xiangdong Ma,Binding Hu,Jianbo Chu
出处
期刊:Ultrasonics [Elsevier]
卷期号:134: 107085-107085
标识
DOI:10.1016/j.ultras.2023.107085
摘要

The phased array ultrasonic technique (PAUT) with full matrix capture (FMC) exhibits the advantages of high imaging accuracy and great defect characterization ability, which play important roles in the nondestructive testing of welded structures. To address the problem of a large amount of signal acquisition, storage, and transmission data in nozzle weld defect monitoring, a PAUT with an FMC data compression method based on compressive sensing (CS) was proposed. To accomplish this, the detection of nozzle welds using PAUT with FMC was performed by simulation and experiment, and the obtained FMC data were compressed and reconstructed. A suitable sparse representation was found dedicated to the FMC data of nozzle welds, and the reconstruction performance was compared between the greedy theory-based orthogonal matching pursuit (OMP) algorithm and the convex optimization theory-based basis pursuit (BP). Also, an empirical mode decomposition (EMD)-based intrinsic mode function (IMF) circular matrix was constructed to provide another idea for the construction of the sensing matrix. Although the experimental results were not able to reach the ideal effect in the simulation, the image was restored accurately with a small number of measured values, and flaw identification could be guaranteed, indicating that the CS algorithm can effectively improve the defect detection efficiency of the phased array.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
Hu完成签到,获得积分20
35秒前
liuliu发布了新的文献求助10
43秒前
lovelife完成签到,获得积分10
49秒前
liuliu完成签到,获得积分10
51秒前
ceeray23应助科研通管家采纳,获得10
51秒前
ceeray23应助科研通管家采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
51秒前
ceeray23应助科研通管家采纳,获得10
51秒前
fukase完成签到,获得积分10
1分钟前
renhuizhi完成签到,获得积分10
1分钟前
xxx发布了新的文献求助10
1分钟前
zpli完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
小雨发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
默默善愁发布了新的文献求助10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
我是老大应助默默善愁采纳,获得30
2分钟前
3分钟前
犬来八荒发布了新的文献求助10
3分钟前
3分钟前
Migue发布了新的文献求助50
3分钟前
cy完成签到 ,获得积分10
3分钟前
3分钟前
cccttt发布了新的文献求助10
3分钟前
可爱的函函应助cccttt采纳,获得10
3分钟前
4分钟前
4分钟前
笨蛋美女完成签到 ,获得积分10
4分钟前
完美世界应助666采纳,获得10
4分钟前
朱羊羊发布了新的文献求助10
4分钟前
赤恩完成签到,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617127
求助须知:如何正确求助?哪些是违规求助? 4701470
关于积分的说明 14913716
捐赠科研通 4749642
什么是DOI,文献DOI怎么找? 2549305
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091