Compressive sensing of ultrasonic array data with full matrix capture in nozzle welds inspection

匹配追踪 压缩传感 喷嘴 相控阵 计算机科学 声学 压缩空气 基质(化学分析) 无损检测 超声波传感器 希尔伯特-黄变换 数据采集 信号重构 算法 材料科学 信号处理 计算机视觉 机械工程 计算机硬件 工程类 物理 电信 滤波器(信号处理) 量子力学 数字信号处理 天线(收音机) 复合材料 操作系统
作者
Qian Xu,Haitao Wang,Guohui Tian,Xiangdong Ma,Binding Hu,Jianbo Chu
出处
期刊:Ultrasonics [Elsevier]
卷期号:134: 107085-107085
标识
DOI:10.1016/j.ultras.2023.107085
摘要

The phased array ultrasonic technique (PAUT) with full matrix capture (FMC) exhibits the advantages of high imaging accuracy and great defect characterization ability, which play important roles in the nondestructive testing of welded structures. To address the problem of a large amount of signal acquisition, storage, and transmission data in nozzle weld defect monitoring, a PAUT with an FMC data compression method based on compressive sensing (CS) was proposed. To accomplish this, the detection of nozzle welds using PAUT with FMC was performed by simulation and experiment, and the obtained FMC data were compressed and reconstructed. A suitable sparse representation was found dedicated to the FMC data of nozzle welds, and the reconstruction performance was compared between the greedy theory-based orthogonal matching pursuit (OMP) algorithm and the convex optimization theory-based basis pursuit (BP). Also, an empirical mode decomposition (EMD)-based intrinsic mode function (IMF) circular matrix was constructed to provide another idea for the construction of the sensing matrix. Although the experimental results were not able to reach the ideal effect in the simulation, the image was restored accurately with a small number of measured values, and flaw identification could be guaranteed, indicating that the CS algorithm can effectively improve the defect detection efficiency of the phased array.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱珠贝发布了新的文献求助10
刚刚
刚刚
zxxx完成签到,获得积分10
1秒前
柒柒发布了新的文献求助10
1秒前
2秒前
cannon8应助宇哈哈采纳,获得20
3秒前
3秒前
朴实皮皮虾完成签到,获得积分10
3秒前
4秒前
共享精神应助天水张家辉采纳,获得10
4秒前
赘婿应助chen采纳,获得10
4秒前
青花发布了新的文献求助30
4秒前
星辰大海应助简单的白云采纳,获得10
4秒前
beiye完成签到 ,获得积分10
5秒前
Zachia发布了新的文献求助10
6秒前
7秒前
科研通AI2S应助lyc是傻狗采纳,获得10
8秒前
喜悦非笑完成签到,获得积分20
8秒前
8秒前
chen发布了新的文献求助10
9秒前
kyyy完成签到,获得积分10
10秒前
11秒前
11秒前
舒适的石头完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
XXH关闭了XXH文献求助
16秒前
喜悦非笑发布了新的文献求助10
17秒前
郑石发布了新的文献求助10
17秒前
繁荣的鲂完成签到,获得积分10
17秒前
shinen发布了新的文献求助30
18秒前
Orange应助青花采纳,获得30
18秒前
执着念寒发布了新的文献求助30
19秒前
20秒前
21秒前
可爱的函函应助直率媚颜采纳,获得10
21秒前
lll完成签到,获得积分10
22秒前
CodeCraft应助Zachia采纳,获得10
24秒前
SSSYYY完成签到,获得积分10
25秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269766
求助须知:如何正确求助?哪些是违规求助? 2909409
关于积分的说明 8348865
捐赠科研通 2579686
什么是DOI,文献DOI怎么找? 1402985
科研通“疑难数据库(出版商)”最低求助积分说明 655595
邀请新用户注册赠送积分活动 634856