Shape-Guided Dual Consistency Semi-Supervised Learning Framework for 3-D Medical Image Segmentation

分割 计算机科学 人工智能 一致性(知识库) 一般化 约束(计算机辅助设计) 代表(政治) 推论 边界(拓扑) 图像(数学) 对偶(语法数字) 深度学习 模式识别(心理学) 卷积(计算机科学) 人工神经网络 数学 文学类 法学 艺术 数学分析 几何学 政治 政治学
作者
Tao Lei,Hulin Liu,Yong Wan,Chenxia Li,Yong Xia,Asoke K. Nandi
出处
期刊:IEEE transactions on radiation and plasma medical sciences [Institute of Electrical and Electronics Engineers]
卷期号:7 (7): 719-731 被引量:3
标识
DOI:10.1109/trpms.2023.3286866
摘要

Popular semi-supervised 3-D medical image segmentation networks commonly suffer from two limitations: First, the geometry shape constraint of targets is frequently disregarded, leading to coarse segmentation results. Second, semi-supervision is only performed on the last layer of the decoder, resulting in the insufficient representation learning of 3-D convolution neural network. To address these issues, we propose a shape-guided dual consistency semi-supervised learning (SDC-SSL) framework for 3-D medical image segmentation. Indeed, the proposed framework has two dominating advantages. Initially, a geometry-aware shape constraint is presented and used to learn the shape representation, which converts the differences between two networks into an unsupervised loss and lets the framework learn the boundary distance information of targets in unlabeled challenging regions. Additionally, a deep-supervised knowledge transfer strategy is developed and employed by the proposed framework, which can upgrade the generalization ability of our framework without increasing any extra parameters and computation costs in the inference phase. Experimental results demonstrate that the proposed framework outperforms state-of-the-art methods on two challenging 3-D medical image segmentation tasks due to effective geometry-aware shape constraint on unlabeled data and the strong ability of knowledge mining on labeled data. The code is available at: https://github.com/SUST-reynole/SDC-SSL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助yiling采纳,获得10
1秒前
大个应助小鱼采纳,获得10
1秒前
罗尔与柯西完成签到,获得积分10
1秒前
2秒前
3秒前
脑洞疼应助一颗烂番茄采纳,获得10
3秒前
4秒前
英姑应助gemini0615采纳,获得10
6秒前
英姑应助yuzu采纳,获得10
6秒前
tony发布了新的文献求助10
8秒前
机器猫发布了新的文献求助10
8秒前
子车茗应助白先生采纳,获得10
10秒前
10秒前
研友_Z343J8完成签到 ,获得积分10
11秒前
zzyyy发布了新的文献求助10
14秒前
Captain发布了新的文献求助10
16秒前
16秒前
wub完成签到 ,获得积分10
17秒前
jj158完成签到,获得积分20
17秒前
在水一方应助wZx采纳,获得10
17秒前
懒羊羊发布了新的文献求助10
17秒前
体贴的苞络完成签到 ,获得积分10
19秒前
yuzu发布了新的文献求助10
19秒前
20秒前
22秒前
小蘑菇应助直率的钢铁侠采纳,获得10
22秒前
22秒前
23秒前
24秒前
1874发布了新的文献求助20
24秒前
jj158发布了新的文献求助10
25秒前
hokuto应助巫雁采纳,获得10
25秒前
carbonhan应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
Orange应助科研通管家采纳,获得10
26秒前
CodeCraft应助科研通管家采纳,获得10
26秒前
orixero应助科研通管家采纳,获得10
26秒前
bkagyin应助科研通管家采纳,获得10
26秒前
26秒前
Ava应助科研通管家采纳,获得10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160894
求助须知:如何正确求助?哪些是违规求助? 2812133
关于积分的说明 7894461
捐赠科研通 2470993
什么是DOI,文献DOI怎么找? 1315830
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068