亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantitatively Determining Surface–Adsorbate Properties from Vibrational Spectroscopy with Interpretable Machine Learning

化学 光谱学 拉曼光谱 表征(材料科学) 财产(哲学) 红外光谱学 度量(数据仓库) 基质(水族馆) 生物系统 表面增强拉曼光谱 化学物理 统计物理学 人工智能 纳米技术 计算机科学 拉曼散射 材料科学 光学 物理 数据挖掘 有机化学 哲学 地质学 量子力学 认识论 海洋学 生物
作者
Xijun Wang,Shuang Jiang,Wei Hu,Sheng Ye,Tairan Wang,Fan Wu,Yang Li,Xiyu Li,Guozhen Zhang,Xin Chen,Jun Jiang,Yi Luo
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (35): 16069-16076 被引量:79
标识
DOI:10.1021/jacs.2c06288
摘要

Learning microscopic properties of a material from its macroscopic measurables is a grand and challenging goal in physical science. Conventional wisdom is to first identify material structures exploiting characterization tools, such as spectroscopy, and then to infer properties of interest, often with assistance of theory and simulations. This indirect approach has limitations due to the accumulation of errors from retrieving structures from spectral signals and the lack of quantitative structure-property relationship. A new pathway directly from spectral signals to microscopic properties is highly desirable, as it would offer valuable guidance toward materials evaluation and design via spectroscopic measurements. Herein, we exploit machine-learned vibrational spectroscopy to establish quantitative spectrum-property relationships. Key interaction properties of substrate-adsorbate systems, including adsorption energy and charge transfer, are quantitatively determined directly from Infrared and Raman spectroscopic signals of the adsorbates. The machine-learned spectrum-property relationships are presented as mathematical formulas, which are physically interpretable and therefore transferrable to a series of metal/alloy surfaces. The demonstrated ability of quantitative determination of hard-to-measure microscopic properties using machine-learned spectroscopy will significantly broaden the applicability of conventional spectroscopic techniques for materials design and high throughput screening under operando conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
26秒前
西瓜霜发布了新的文献求助10
30秒前
41秒前
彭于晏应助读书的时候采纳,获得80
53秒前
落沧完成签到 ,获得积分10
53秒前
充电宝应助西瓜霜采纳,获得10
56秒前
59秒前
59秒前
Jasper应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得30
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
传奇3应助读书的时候采纳,获得10
1分钟前
JodieZhu完成签到,获得积分10
1分钟前
嘻嘻哈哈发布了新的文献求助10
1分钟前
1分钟前
wz完成签到,获得积分10
1分钟前
JamesPei应助manjusaka采纳,获得10
2分钟前
bkagyin应助读书的时候采纳,获得10
2分钟前
2分钟前
manjusaka发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
vitamin完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
嘻嘻哈哈发布了新的文献求助10
3分钟前
3分钟前
3分钟前
大模型应助读书的时候采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
刻苦的艳发布了新的文献求助10
5分钟前
酷波er应助刻苦的艳采纳,获得30
5分钟前
5分钟前
6分钟前
果酱完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732400
求助须知:如何正确求助?哪些是违规求助? 5338949
关于积分的说明 15322212
捐赠科研通 4877990
什么是DOI,文献DOI怎么找? 2620796
邀请新用户注册赠送积分活动 1570000
关于科研通互助平台的介绍 1526672