Global Transformer and Dual Local Attention Network via Deep-Shallow Hierarchical Feature Fusion for Retinal Vessel Segmentation

人工智能 分割 计算机科学 模式识别(心理学) 计算机视觉 特征(语言学) 深度学习 语言学 哲学
作者
Yang Li,Yue Zhang,Jingyu Liu,Kang Wang,Kai Zhang,Gensheng Zhang,Xiaofeng Liao,Guang Yang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (9): 5826-5839 被引量:44
标识
DOI:10.1109/tcyb.2022.3194099
摘要

Clinically, retinal vessel segmentation is a significant step in the diagnosis of fundus diseases. However, recent methods generally neglect the difference of semantic information between deep and shallow features, which fail to capture the global and local characterizations in fundus images simultaneously, resulting in the limited segmentation performance for fine vessels. In this article, a global transformer (GT) and dual local attention (DLA) network via deep-shallow hierarchical feature fusion (GT-DLA-dsHFF) are investigated to solve the above limitations. First, the GT is developed to integrate the global information in the retinal image, which effectively captures the long-distance dependence between pixels, alleviating the discontinuity of blood vessels in the segmentation results. Second, DLA, which is constructed using dilated convolutions with varied dilation rates, unsupervised edge detection, and squeeze-excitation block, is proposed to extract local vessel information, consolidating the edge details in the segmentation result. Finally, a novel deep-shallow hierarchical feature fusion (dsHFF) algorithm is studied to fuse the features in different scales in the deep learning framework, respectively, which can mitigate the attenuation of valid information in the process of feature fusion. We verified the GT-DLA-dsHFF on four typical fundus image datasets. The experimental results demonstrate our GT-DLA-dsHFF achieves superior performance against the current methods and detailed discussions verify the efficacy of the proposed three modules. Segmentation results of diseased images show the robustness of our proposed GT-DLA-dsHFF. Implementation codes will be available on https://github.com/YangLibuaa/GT-DLA-dsHFF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘟嘟发布了新的文献求助10
1秒前
局内人发布了新的文献求助10
1秒前
2秒前
欢呼山雁发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
6秒前
9秒前
可爱的函函应助wangzai采纳,获得10
9秒前
lx发布了新的文献求助10
11秒前
叶子完成签到 ,获得积分10
12秒前
充电宝应助108实验室采纳,获得10
13秒前
千纸鹤完成签到 ,获得积分10
15秒前
烟花应助积极小全采纳,获得30
15秒前
乐乐应助lx采纳,获得10
16秒前
可靠幼旋应助小糖豆采纳,获得10
18秒前
20秒前
慕青应助宋宋宋采纳,获得10
20秒前
23秒前
24秒前
高兴灭龙发布了新的文献求助10
24秒前
可靠幼旋应助勤奋雅容采纳,获得10
24秒前
maox1aoxin应助爱笑盼曼采纳,获得30
26秒前
lx完成签到,获得积分10
27秒前
29秒前
ssc完成签到,获得积分20
30秒前
bazinga应助高兴灭龙采纳,获得10
32秒前
等于几都行完成签到 ,获得积分10
32秒前
思源应助Allen采纳,获得10
34秒前
34秒前
汉堡包应助科研通管家采纳,获得10
35秒前
田様应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
啊圣诞袜应助科研通管家采纳,获得10
35秒前
iNk应助科研通管家采纳,获得10
35秒前
852应助科研通管家采纳,获得10
36秒前
搜集达人应助科研通管家采纳,获得10
36秒前
124应助科研通管家采纳,获得20
36秒前
iNk应助科研通管家采纳,获得10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309982
求助须知:如何正确求助?哪些是违规求助? 2943089
关于积分的说明 8512665
捐赠科研通 2618199
什么是DOI,文献DOI怎么找? 1430922
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490