ResNet-50 based technique for EEG image characterization due to varying environmental stimuli

脑电图 计算机科学 支持向量机 卷积神经网络 人工智能 学习迁移 模式识别(心理学) 残余物 心理学 算法 精神科
作者
Tingyi Tian,Le Wang,Man Luo,Yiping Sun,Xiaoyan Liu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:225: 107092-107092 被引量:17
标识
DOI:10.1016/j.cmpb.2022.107092
摘要

Emotion is an important factor affecting a person's physical and mental health, but there are few ways to detect a patient's emotions in daily life. Negative emotions not only affect recovery after treatment, but also cause poor health. Current emotion classification research based on EEG image recognition is highly accurate, making the development of an emotion detector feasible. Using emotion data from the SEED, this study trained a detection model using the residual neural network ResNet-50 with a SAM and SE-block double attention mechanism, and used quantitative parameters based on the Russell emotion cycle model to construct a human-computer interactive health detector for emotion recognition in EEG images induced by environmental stimuli.Images of 61 environmental scenes were collected and divided into three categories according to the visual characteristics of the environment. Eight volunteers were recruited to collect a total of 488 EEG image data. The trained ResNet-50 model was used to automatically analyze the characteristics of the collected EEG images and classify emotions. The model was compared the support vector machine (SVM), transfer component analysis (TCA), dynamic graph convolutional neural network (DGCNN), and DAN methods.The accuracy of the ResNet-50 model trained in this study is 85.11% and its variance is 7.91. Through the verification of EEG images induced by environmental stimuli, the results are improved by 2.01% and the variance is reduced by 0.04 compared with the model's training results. The model is more accurate in identifying negative and neutral emotions, indicating that the ResNet-50 architecture better recognizes motions in EEG images induced by environmental stimuli. Compared with other algorithm models, the proposed model has the lowest variance and highest stability. The comparison of various algorithms revealed that environmental scenes with different visual features induce different emotions.The proposed monitor can collect EEG images of patients induced by environmental stimuli in daily life in real time, automatically analyze and identify emotional characteristics, and provide quantitative parameters and visualization. It not only enables patients to conveniently monitor their emotional state and make timely adjustments, but also assists doctors in clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ZYQ采纳,获得10
1秒前
1秒前
图图发布了新的文献求助10
1秒前
佐佐木淳平完成签到,获得积分10
1秒前
bkagyin应助aldehyde采纳,获得10
2秒前
隐形从梦发布了新的文献求助10
2秒前
LHD发布了新的文献求助10
2秒前
3秒前
英俊的铭应助somin采纳,获得10
3秒前
3秒前
3秒前
北音发布了新的文献求助10
4秒前
Aurora发布了新的文献求助10
4秒前
科研通AI5应助塔塔采纳,获得10
4秒前
zho发布了新的文献求助10
4秒前
城南发布了新的文献求助10
4秒前
有哪些并发症完成签到,获得积分10
4秒前
5秒前
5秒前
打打应助笑口常开采纳,获得10
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
6秒前
gjww应助科研通管家采纳,获得60
6秒前
meng发布了新的文献求助10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
JamesPei应助科研通管家采纳,获得50
7秒前
7秒前
烂漫藏鸟完成签到 ,获得积分10
7秒前
8秒前
8秒前
Lucas应助醒醒采纳,获得10
8秒前
abab小王发布了新的文献求助10
8秒前
8秒前
Lzr发布了新的文献求助10
8秒前
Mrs小段完成签到,获得积分10
9秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474364
求助须知:如何正确求助?哪些是违规求助? 3066657
关于积分的说明 9100024
捐赠科研通 2757911
什么是DOI,文献DOI怎么找? 1513227
邀请新用户注册赠送积分活动 699469
科研通“疑难数据库(出版商)”最低求助积分说明 698986