Exploring the conversion mechanism of formaldehyde to CO2 and H2 catalyzed by bifunctional ruthenium catalysts: A DFT study

催化作用 双功能 甲醛 化学 机制(生物学) 双功能催化剂 光化学 有机化学 认识论 哲学
作者
Min Du,Jianju Zheng,Lan Mei,Yuan Zhang,Cheng Hou
出处
期刊:Molecular Catalysis [Elsevier]
卷期号:530: 112630-112630
标识
DOI:10.1016/j.mcat.2022.112630
摘要

• The mechanistic preference of bifunctional catalysts in multi-step catalytic reactions was elucidated. • The origin of the divergent activities of the different functional ligands was revealed. • New strategies for regulating and evaluating the catalytic driving force were proposed. Bifunctional catalysts have a wide range of applications in chemical hydrogen storage. However, the versatile structure and complex influencing factors of catalysts still limit the current mechanistic understanding. Herein, a theoretical study based on density functional theory calculation is performed to illuminate the mechanistic preference of the conversion from formaldehyde to CO 2 and H 2 catalyzed by bifunctional ruthenium catalysts. The computational results indicate: (1) In contrast to the previously proposed mechanism, the catalyst is involved in the formaldehyde hydrolysis reaction and effectively reduces the activation free energy barrier. (2) Metal ligand cooperation mechanism is preferred instead of the metal-centred mechanism due to the stronger interaction between substrate and dual active sites on the bifunctional catalyst. (3) The catalyst with the O H group exhibits better catalytic activity compared with the N H group due to appropriate catalytic driving force, which is governed by the intrinsic electronic effects of the Lewis basic functional ligand. The p K a value can be used as a reliable descriptor to evaluate the catalytic activity of the functional ligand. Our study highlights the advantages of bifunctional catalysts in dehydrogenation-related reactions and proposes feasible strategies for the regulation of bifunctional catalyst activity, which is expected to provide new inspiration for future bifunctional catalyst design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iacademic发布了新的文献求助10
刚刚
1秒前
脑洞疼应助Peanut采纳,获得10
1秒前
2秒前
好运来完成签到 ,获得积分10
3秒前
筱筱完成签到,获得积分10
3秒前
ljq完成签到,获得积分10
4秒前
愉快的夏菡完成签到,获得积分10
4秒前
4秒前
yile完成签到,获得积分10
5秒前
Croxy发布了新的文献求助10
5秒前
机智的乌发布了新的文献求助10
5秒前
7秒前
刘一三发布了新的文献求助10
7秒前
上官若男应助无语的念真采纳,获得10
7秒前
8秒前
8秒前
明亮夕阳发布了新的文献求助30
8秒前
11秒前
可爱的函函应助华hua采纳,获得10
11秒前
Peanut发布了新的文献求助10
14秒前
小蘑菇应助Promise采纳,获得10
14秒前
子车茗应助口外彭于晏采纳,获得10
15秒前
15秒前
温暖汽车发布了新的文献求助10
16秒前
小太阳完成签到,获得积分10
17秒前
Liu完成签到,获得积分10
17秒前
18秒前
Hao完成签到,获得积分10
19秒前
大脸猫发布了新的文献求助10
19秒前
19秒前
mhl11应助lh采纳,获得10
20秒前
DocH完成签到,获得积分10
22秒前
杨文彬发布了新的文献求助10
22秒前
靳元逵发布了新的文献求助10
23秒前
舒心的万声完成签到,获得积分10
24秒前
24秒前
25秒前
朱莉完成签到 ,获得积分10
25秒前
皮汤汤完成签到 ,获得积分10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315281
求助须知:如何正确求助?哪些是违规求助? 2947273
关于积分的说明 8535004
捐赠科研通 2623375
什么是DOI,文献DOI怎么找? 1435021
科研通“疑难数据库(出版商)”最低求助积分说明 665445
邀请新用户注册赠送积分活动 651155