缺氧(环境)
心肌梗塞
医学
梗塞
HMGB1
细胞凋亡
LRRK2
炎症
内科学
内分泌学
心脏病学
生物
疾病
化学
帕金森病
生物化学
有机化学
氧气
作者
Yuan Liu,Lu Chen,Lu Gao,Xiaoxin Pei,Zekai Tao,Yawei Xu,Ran Li
标识
DOI:10.1016/j.freeradbiomed.2022.08.035
摘要
LRRK2 is a Ser/Thr kinase with multiple functional domains. Studies have shown that LRRK2 mutations are closely related to hereditary Parkinson's disease. However, its role in cardiovascular disease, especially in myocardial infarction, is unclear. The aim of this study was to explore the functional role of LRRK2 in myocardial infarction. Wild-type and LRRK2-knockout mice were subjected to coronary artery ligation (left anterior descending) to establish a myocardial infarction model. Neonatal rat cardiomyocytes were subjected to hypoxia to induce hypoxic injury in vitro. We found increased LRRK2 expression levels in the infarct periphery in mouse hearts and hypoxic cardiomyocytes. LRRK2-deficient mice exhibited decreased death rates and reduced infarction areas compared to wild-type controls 14 days after infarction. LRRK2-deficient mice showed reduced left ventricular fibrosis and inflammatory responses, as well as improved cardiac function. In the in vitro study, LRRK2 silencing decreased cleaved caspase-3 activity, reduced cardiomyocyte apoptosis, and diminished hypoxia-induced inflammation. However, LRRK2 overexpression enhanced cleaved caspase-3 activity, increased the number of apoptotic cardiomyocytes, and caused remarkable hypoxia-induced inflammation. When examining the underlying mechanisms, we found that hypoxia increased HIFα expression, which enhanced LRRK2 expression. LRRK2 induced high expression of HMGB1 via P53. When HMGB1 was blocked using an anti-HMGB1 antibody, the deleterious effects caused by LRRK2 overexpression following hypoxia were inhibited in cardiomyocytes. In summary, LRRK2 deficiency protects the heart against myocardial infarction injury. The mechanism underlying this effect involves the P53-HMGB1 pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI