Joint 3D inversion of gravity and magnetic data using deep learning neural networks

反演(地质) 计算机科学 人工智能 深度学习 传感器融合 数据预处理 人工神经网络 工作流程 地球物理学 算法 地质学 模式识别(心理学) 地震学 数据库 构造学
作者
Nanyu Wei,Dikun Yang,Zhigang Wang,Yao Lu
标识
DOI:10.1190/image2022-3751223.1
摘要

Three-dimensional (3D) joint inversion of geophysical data is often non-unique, non-linear on a large scale, and is complicated for most conventional model-driven approaches that use additional regularization terms in the objective function. In recent years, with the development of computing devices and artificial intelligence, processing large-scale data using data-driven methods is no longer difficult, and great progress has been made in the inversion of single geophysical dataset using the deep learning. In this work, we explore the feasibility of using deep learning methods for 3D joint inversion. In particular, we propose two methods based on modified U-Net architectures: (1) early fusion that constructs a single network and requires different types of data to be preprocessed to share the same size; (2) late fusion that employs multiple branches of network designed for different types of data, but feature-fused together before the final loss is calculated. Our synthetic examples focus on the joint 3D inversion of gravity and magnetic inversion for mineral exploration; the model is parameterized by an ore body represented by an ellipsoid with an arbitrary size, position and orientation in the 3D space. We have found that the performance of the early fusion mostly relies on the data preprocessing, but the early fusion has obvious advantages in its simplicity and efficiency; the late fusion is a more stable choice and highly flexible in cases where data are in different sizes. Our results have proven the feasibility and the basic workflow of 3D joint inversion using the deep learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汤浩宏发布了新的文献求助10
1秒前
天天完成签到 ,获得积分10
1秒前
ray发布了新的文献求助10
1秒前
Hello应助wang采纳,获得10
2秒前
qq完成签到 ,获得积分10
2秒前
Jasper应助zoloft采纳,获得10
2秒前
年华完成签到,获得积分10
2秒前
4秒前
充电宝应助伯赏诗霜采纳,获得50
6秒前
ubiqutin完成签到,获得积分10
7秒前
大模型应助Anquan采纳,获得30
7秒前
搜集达人应助饱满的紫伊采纳,获得30
8秒前
科研通AI5应助海鸥海鸥采纳,获得10
9秒前
ubiqutin发布了新的文献求助10
9秒前
10秒前
浮浮世世发布了新的文献求助50
10秒前
zoloft完成签到,获得积分10
12秒前
忆韵完成签到,获得积分10
12秒前
susu完成签到,获得积分20
14秒前
隐形曼青应助YYJ25采纳,获得10
15秒前
15秒前
zoloft发布了新的文献求助10
16秒前
yhc完成签到,获得积分10
16秒前
季生发布了新的文献求助60
17秒前
老孙完成签到,获得积分10
18秒前
19秒前
汤浩宏完成签到,获得积分10
22秒前
22秒前
yudandan@CJLU发布了新的文献求助10
24秒前
Zkxxxx完成签到,获得积分10
24秒前
123完成签到,获得积分10
25秒前
大王卡完成签到,获得积分20
26秒前
26秒前
机智的紫丝完成签到,获得积分10
26秒前
TT发布了新的文献求助10
27秒前
田様应助啥,这都是啥采纳,获得10
30秒前
辛勤的孤容完成签到,获得积分10
31秒前
31秒前
31秒前
petrichor应助优美的跳跳糖采纳,获得1020
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849