亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs

计算机科学 图形 图嵌入 特征学习 疾病 人工智能 机器学习 代表(政治) 计算生物学 理论计算机科学 生物 医学 政治学 政治 病理 法学
作者
Qiguo Dai,Ziqiang Liu,Zhaowei Wang,Xiaodong Duan,Maozu Guo
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:13
标识
DOI:10.1093/bib/bbac379
摘要

Abstract Motivation: CircularRNA (circRNA) is a class of noncoding RNA with high conservation and stability, which is considered as an important disease biomarker and drug target. Accumulating pieces of evidence have indicated that circRNA plays a crucial role in the pathogenesis and progression of many complex diseases. As the biological experiments are time-consuming and labor-intensive, developing an accurate computational prediction method has become indispensable to identify disease-related circRNAs. Results: We presented a hybrid graph representation learning framework, named GraphCDA, for predicting the potential circRNA–disease associations. Firstly, the circRNA–circRNA similarity network and disease–disease similarity network were constructed to characterize the relationships of circRNAs and diseases, respectively. Secondly, a hybrid graph embedding model combining Graph Convolutional Networks and Graph Attention Networks was introduced to learn the feature representations of circRNAs and diseases simultaneously. Finally, the learned representations were concatenated and employed to build the prediction model for identifying the circRNA–disease associations. A series of experimental results demonstrated that GraphCDA outperformed other state-of-the-art methods on several public databases. Moreover, GraphCDA could achieve good performance when only using a small number of known circRNA–disease associations as the training set. Besides, case studies conducted on several human diseases further confirmed the prediction capability of GraphCDA for predicting potential disease-related circRNAs. In conclusion, extensive experimental results indicated that GraphCDA could serve as a reliable tool for exploring the regulatory role of circRNAs in complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
baronge发布了新的文献求助10
19秒前
xx完成签到 ,获得积分10
24秒前
Artorias完成签到,获得积分10
29秒前
30秒前
FashionBoy应助Artorias采纳,获得10
33秒前
NexusExplorer应助尺素寸心采纳,获得10
36秒前
脑洞疼应助科研通管家采纳,获得10
43秒前
zhongu应助科研通管家采纳,获得10
43秒前
华仔应助科研通管家采纳,获得10
43秒前
隐形曼青应助科研通管家采纳,获得10
43秒前
Jasper应助科研通管家采纳,获得10
44秒前
44秒前
47秒前
50秒前
小情绪完成签到 ,获得积分10
51秒前
啊啊啊发布了新的文献求助10
52秒前
尺素寸心发布了新的文献求助10
56秒前
尺素寸心完成签到,获得积分10
1分钟前
招水若离完成签到,获得积分10
1分钟前
易达发布了新的文献求助10
1分钟前
nnnick完成签到,获得积分0
1分钟前
chenwei完成签到,获得积分10
1分钟前
爆米花应助DRYAN采纳,获得20
1分钟前
科研通AI5应助......采纳,获得10
1分钟前
zhl完成签到,获得积分10
1分钟前
1分钟前
xiuxiuzhang完成签到 ,获得积分10
1分钟前
DRYAN发布了新的文献求助20
1分钟前
晓书完成签到 ,获得积分10
1分钟前
kmario完成签到,获得积分10
1分钟前
DRYAN完成签到,获得积分10
1分钟前
1分钟前
2分钟前
DRYAN发布了新的文献求助10
2分钟前
Lucas应助一杯冰美式采纳,获得10
2分钟前
zws发布了新的文献求助10
2分钟前
2分钟前
jianning完成签到,获得积分10
2分钟前
李健的粉丝团团长应助cc采纳,获得10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516310
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9240017
捐赠科研通 2793665
什么是DOI,文献DOI怎么找? 1533155
邀请新用户注册赠送积分活动 712597
科研通“疑难数据库(出版商)”最低求助积分说明 707384