机制(生物学)
雌激素受体
化学
雌激素
药理学
环境化学
生物物理学
生物
内科学
内分泌学
医学
认识论
哲学
癌症
乳腺癌
作者
Li Wang,Yu Qie,Yu Yang,Qiang Zhao
标识
DOI:10.1021/acs.est.1c08624
摘要
DDT and its metabolites (DDTs) can induce estrogenic effects. Previous mechanistic investigations mainly concentrated on activating the genomic transcription of estrogen receptor (ER) pathways. Here, we identified whether estrogen-related receptor γ (ERRγ), an orphan nuclear receptor, is a potential target of DDTs by receptor binding, transcriptional activity, and receptor-mediated pathway assays. Fluorescence polarization-based binding assays showed that all eight DDTs bound to ERRγ directly, with Kd values ranging from 0.73-168.82 μM. Among them, 2,2-bis(4-chlorophenyl)ethanol (4,4'-DDOH) exhibited the highest binding affinity, which was 2.5-fold stronger than GSK4716, a well-known ERRγ agonist. Eight DDTs exhibited agonistic activity toward the ERRγ pathway, with 4,4'-DDOH showing the strongest potency. In silico studies revealed that DDTs tended to bind with ERRγ in the agonistic conformation. Using a SKBR3 breast cancer cell model, we further found that nanomolar or micromolar levels of DDTs significantly activated the ERRγ pathway in cells and induced cell proliferation through the ERRγ-modulated cell cycle. These results indicated that the binding and activation of DDTs to ERRγ might serve as molecular initiating events for subsequent ERRγ-mediated signaling pathways and adverse outcomes. Overall, our results demonstrated that ERRγ might be a crucial pathway involved in the estrogenic disruption effects of DDTs.
科研通智能强力驱动
Strongly Powered by AbleSci AI