Deep Neural Networks for Weed Detections Towards Precision Weeding

杂草 计算机科学 人工智能 目标检测 深度学习 机器学习 模式识别(心理学) 农学 生物
作者
Abdur Rahman,Yuzhen Lu,Haifeng Wang
标识
DOI:10.13031/aim.202200845
摘要

ABSTRACT. Alternative non-chemical or chemical-reduced weed control methods, especially for herbicide- resistant weeds, are critical for long-term and integrated weed management. Through weed detection and localization, machine vision technology has the potential to enable site- and species-specific treatments targeting individual weed plants. However, due to unstructured field circumstances and large biological variability of weeds, robust and accurate weed detection remains a challenging endeavor. Deep learning (DL) algorithms, powered by large-scale image data, promise to achieve the weed detection performance required for precision weeding. In this study, a three-class weed dataset with bounding box annotations was curated, consisting of 848 color images collected in cotton fields under variable field conditions. A set of weed detection models were built using DL-based one-stage and two-stage object detectors, including YOLOv5, RetinaNet, EfficientDet, and Faster RCNN, by transferring pretrained the object detection models to the weed dataset. RetinaNet (R101-FPN), despite its longer inference time, achieved the highest overall detection accuracy with a mean average precision (mAP@0.50) of 79.98%. YOLOv5n showed the potential for real-time deployment in resource-constraint devices because of the smallest number of model parameters (1.8 million) and the fastest inference (17 ms on the Google Colab) while achieving comparable detection accuracy (76.58% mAP@0.50). Data augmentation through geometric and color transformation enhanced the accuracy of the weed detection models by the maximum of 4.2%. The software programs and the weed dataset used in this study are made publicly available (https://github.com/abdurrahman1828/DNNs-for-Weed-Detections; www.kaggle.com/yuzhenlu/cottonweeddet3).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助薛定谔采纳,获得10
1秒前
青ZZZZ发布了新的文献求助10
2秒前
壮观以松发布了新的文献求助10
2秒前
西哥发布了新的文献求助10
3秒前
DCH完成签到,获得积分10
4秒前
海豹完成签到,获得积分10
4秒前
欣2233发布了新的文献求助10
4秒前
7秒前
8秒前
slz发布了新的文献求助10
9秒前
9秒前
小柒应助科研通管家采纳,获得10
10秒前
nebula应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
小柒应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
11秒前
Flynn发布了新的文献求助10
12秒前
13秒前
sdadsa发布了新的文献求助10
14秒前
伶俐如冰发布了新的文献求助10
14秒前
薛定谔发布了新的文献求助10
15秒前
虚心的颜发布了新的文献求助10
16秒前
MoodMeed完成签到 ,获得积分10
16秒前
完美世界应助Rousongxiaobei采纳,获得10
16秒前
ZH发布了新的文献求助10
16秒前
18秒前
20秒前
陈小花发布了新的文献求助10
20秒前
20秒前
陶1122完成签到,获得积分10
23秒前
小菜鸟001发布了新的文献求助10
23秒前
24秒前
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745759
求助须知:如何正确求助?哪些是违规求助? 3288685
关于积分的说明 10060202
捐赠科研通 3004942
什么是DOI,文献DOI怎么找? 1649967
邀请新用户注册赠送积分活动 785636
科研通“疑难数据库(出版商)”最低求助积分说明 751204