清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhancing pathological complete response prediction in breast cancer: the role of dynamic characterization of DCE-MRI and its association with tumor heterogeneity

接收机工作特性 医学 乳腺癌 动态增强MRI 逻辑回归 外科肿瘤学 磁共振成像 动态对比度 特征(语言学) 肿瘤科 内科学 乳房磁振造影 癌症 放射科 乳腺摄影术 语言学 哲学
作者
Xinyu Zhang,Xinzhi Teng,Jiang Zhang,Qingpei Lai,Jing Cai
出处
期刊:Breast Cancer Research [Springer Nature]
卷期号:26 (1) 被引量:2
标识
DOI:10.1186/s13058-024-01836-3
摘要

Abstract Background Early prediction of pathological complete response (pCR) is important for deciding appropriate treatment strategies for patients. In this study, we aimed to quantify the dynamic characteristics of dynamic contrast-enhanced magnetic resonance images (DCE-MRI) and investigate its value to improve pCR prediction as well as its association with tumor heterogeneity in breast cancer patients. Methods The DCE-MRI, clinicopathologic record, and full transcriptomic data of 785 breast cancer patients receiving neoadjuvant chemotherapy were retrospectively included from a public dataset. Dynamic features of DCE-MRI were computed from extracted phase-varying radiomic feature series using 22 CAnonical Time-sereis CHaracteristics. Dynamic model and radiomic model were developed by logistic regression using dynamic features and traditional radiomic features respectively. Various combined models with clinical factors were also developed to find the optimal combination and the significance of each components was evaluated. All the models were evaluated in independent test set in terms of area under receiver operating characteristic curve (AUC). To explore the potential underlying biological mechanisms, radiogenomic analysis was implemented on patient subgroups stratified by dynamic model to identify differentially expressed genes (DEGs) and enriched pathways. Results A 10-feature dynamic model and a 4-feature radiomic model were developed (AUC = 0.688, 95%CI: 0.635–0.741 and AUC = 0.650, 95%CI: 0.595–0.705) and tested (AUC = 0.686, 95%CI: 0.594–0.778 and AUC = 0.626, 95%CI: 0.529–0.722), with the dynamic model showing slightly higher AUC (train p = 0.181, test p = 0.222). The combined model of clinical, radiomic, and dynamic achieved the highest AUC in pCR prediction (train: 0.769, 95%CI: 0.722–0.816 and test: 0.762, 95%CI: 0.679–0.845). Compared with clinical-radiomic combined model (train AUC = 0.716, 95%CI: 0.665–0.767 and test AUC = 0.695, 95%CI: 0.656–0.714), adding the dynamic component brought significant improvement in model performance (train p < 0.001 and test p = 0.005). Radiogenomic analysis identified 297 DEGs, including CXCL9, CCL18, and HLA-DPB1 which are known to be associated with breast cancer prognosis or angiogenesis. Gene set enrichment analysis further revealed enrichment of gene ontology terms and pathways related to immune system. Conclusion Dynamic characteristics of DCE-MRI were quantified and used to develop dynamic model for improving pCR prediction in breast cancer patients. The dynamic model was associated with tumor heterogeniety in prognostic-related gene expression and immune-related pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
狐狸小姐完成签到 ,获得积分10
18秒前
黄迪迪完成签到 ,获得积分10
30秒前
theo完成签到 ,获得积分10
32秒前
微卫星不稳定完成签到 ,获得积分0
35秒前
46秒前
oscar完成签到,获得积分10
51秒前
雷九万班完成签到 ,获得积分10
52秒前
谢小盟完成签到 ,获得积分10
59秒前
1分钟前
zgd完成签到 ,获得积分10
1分钟前
星辰大海应助Lin采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
课呢完成签到,获得积分10
2分钟前
ni发布了新的文献求助10
2分钟前
小鱼女侠完成签到 ,获得积分10
2分钟前
2分钟前
月儿完成签到 ,获得积分10
2分钟前
2分钟前
Lin发布了新的文献求助10
3分钟前
3分钟前
猪仔5号完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
老古董发布了新的文献求助10
4分钟前
天马行空完成签到,获得积分10
4分钟前
naczx完成签到,获得积分0
4分钟前
缘分完成签到,获得积分10
4分钟前
weihuiting2024完成签到,获得积分10
4分钟前
刘天虎研通完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
chcmy完成签到 ,获得积分0
5分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397953
求助须知:如何正确求助?哪些是违规求助? 3006935
关于积分的说明 8823615
捐赠科研通 2694290
什么是DOI,文献DOI怎么找? 1475840
科研通“疑难数据库(出版商)”最低求助积分说明 682519
邀请新用户注册赠送积分活动 675950