Artificial intelligence in peri‐operative prediction model research: are we there yet?

医学 图书馆学 引用 经典 历史 计算机科学
作者
Akshay Shah,Paula Dhiman
出处
期刊:Anaesthesia [Wiley]
卷期号:79 (10): 1017-1022 被引量:1
标识
DOI:10.1111/anae.16315
摘要

AnaesthesiaEarly View Editorial Artificial intelligence in peri-operative prediction model research: are we there yet? Akshay Shah, Corresponding Author Akshay Shah [email protected] orcid.org/0000-0002-1869-2231 DocAShah Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK Correspondence to: Akshay Shah Email: [email protected]Search for more papers by this authorPaula Dhiman, Paula Dhiman orcid.org/0000-0002-0989-0623 pauladhiman Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, UKSearch for more papers by this author Akshay Shah, Corresponding Author Akshay Shah [email protected] orcid.org/0000-0002-1869-2231 DocAShah Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK Correspondence to: Akshay Shah Email: [email protected]Search for more papers by this authorPaula Dhiman, Paula Dhiman orcid.org/0000-0002-0989-0623 pauladhiman Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, UKSearch for more papers by this author First published: 15 May 2024 https://doi.org/10.1111/anae.16315 1 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK 2 Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, UK This article accompanies an article by Xia et al., Anaesthesia 2024; 79: 399–409. https://doi.org/10.1111/anae.16194. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng 2018; 2: 719–731. https://doi.org/10.1038/s41551-018-0305-z. 10.1038/s41551-018-0305-z PubMedWeb of Science®Google Scholar 2Abramoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 2018; 1: 39. https://doi.org/10.1038/s41746-018-0040-6. 10.1038/s41746-018-0040-6 PubMedWeb of Science®Google Scholar 3Benjamens S, Dhunnoo P, Mesko B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med 2020; 3: 118. https://doi.org/10.1038/s41746-020-00324-0. 10.1038/s41746-020-00324-0 PubMedWeb of Science®Google Scholar 4Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology 2020; 132: 379–394. https://doi.org/10.1097/ALN.0000000000002960. 10.1097/ALN.0000000000002960 PubMedWeb of Science®Google Scholar 5Xia M, Jin C, Zheng Y, et al. Deep learning-based facial analysis for predicting difficult videolaryngoscopy: a feasibility study. Anaesthesia 2024; 79: 399–409. https://doi.org/10.1111/anae.16194. 10.1111/anae.16194 CASPubMedWeb of Science®Google Scholar 6 NHS. AI Dictionary. https://nhsx.github.io/ai-dictionary?term=ai (accessed 10/02/2024). Google Scholar 7Bisgin H, Liu Z, Fang H, Xu X, Tong W. Mining FDA drug labels using an unsupervised learning technique - topic modeling. BMC Bioinformatics 2011; 12(Suppl 10): S11. https://doi.org/10.1186/1471-2105-12-S10-S11. 10.1186/1471-2105-12-S10-S11 PubMedWeb of Science®Google Scholar 8Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge, MA: MIT Press, 2016. Google Scholar 9Chrimes N, Higgs A, Hagberg CA, et al. Preventing unrecognised oesophageal intubation: a consensus guideline from the Project for Universal Management of Airways and international airway societies. Anaesthesia 2022; 77: 1395–1415. https://doi.org/10.1111/anae.15817. 10.1111/anae.15817 CASPubMedWeb of Science®Google Scholar 10Hansel J, Rogers AM, Lewis SR, Cook TM, Smith AF. Videolaryngoscopy versus direct laryngoscopy for adults undergoing tracheal intubation: a Cochrane systematic review and meta-analysis update. Br J Anaesth 2022; 129: 612–623. https://doi.org/10.1016/j.bja.2022.05.027. 10.1016/j.bja.2022.05.027 PubMedWeb of Science®Google Scholar 11van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol 2014; 14: 137. https://doi.org/10.1186/1471-2288-14-137. 10.1186/1471-2288-14-137 PubMedWeb of Science®Google Scholar 12Riley RD, Ensor J, Snell KIE, et al. Calculating the sample size required for developing a clinical prediction model. BMJ 2020; 368: m441. https://doi.org/10.1136/bmj.m441. 10.1136/bmj.m441 PubMedGoogle Scholar 13van den Goorbergh R, van Smeden M, Timmerman D, Van Calster B. The harm of class imbalance corrections for risk prediction models: illustration and simulation using logistic regression. J Am Med Inform Assoc 2022; 29: 1525–1534. https://doi.org/10.1093/jamia/ocac093. 10.1093/jamia/ocac093 PubMedWeb of Science®Google Scholar 14Riley RD, Collins GS. Stability of clinical prediction models developed using statistical or machine learning methods. Biom J 2023; 65: e2200302. https://doi.org/10.1002/bimj.202200302. 10.1002/bimj.202200302 PubMedWeb of Science®Google Scholar 15Alba AC, Agoritsas T, Walsh M, et al. Discrimination and calibration of clinical prediction models: users' guides to the medical literature. JAMA 2017; 318: 1377–1384. https://doi.org/10.1001/jama.2017.12126. 10.1001/jama.2017.12126 PubMedWeb of Science®Google Scholar 16Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: the Achilles heel of predictive analytics. BMC Med 2019; 17: 230. https://doi.org/10.1186/s12916-019-1466-7. 10.1186/s12916-019-1466-7 PubMedWeb of Science®Google Scholar 17Sauerbrei W, Perperoglou A, Schmid M, et al. State of the art in selection of variables and functional forms in multivariable analysis-outstanding issues. Diagn Progn Res 2020; 4: 3. https://doi.org/10.1186/s41512-020-00074-3. 10.1186/s41512-020-00074-3 PubMedGoogle Scholar 18Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol 2019; 110: 12–22. https://doi.org/10.1016/j.jclinepi.2019.02.004. 10.1016/j.jclinepi.2019.02.004 PubMedWeb of Science®Google Scholar 19Ruppert MM, Lipori J, Patel S, et al. ICU delirium-prediction models: a systematic review. Crit Care Explor 2020; 2: e0296. https://doi.org/10.1097/CCE.0000000000000296. 10.1097/CCE.0000000000000296 PubMedGoogle Scholar 20Smith LA, Oakden-Rayner L, Bird A, Zeng M, To MS, Mukherjee S, Palmer LJ. Machine learning and deep learning predictive models for long-term prognosis in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis. Lancet Digit Health 2023; 5: e872–e881. https://doi.org/10.1016/S2589-7500(23)00177-2. 10.1016/S2589-7500(23)00177-2 CASPubMedGoogle Scholar 21Gravesteijn BY, Nieboer D, Ercole A, et al. Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury. J Clin Epidemiol 2020; 122: 95–107. https://doi.org/10.1016/j.jclinepi.2020.03.005. 10.1016/j.jclinepi.2020.03.005 PubMedWeb of Science®Google Scholar 22Boutron I, Ravaud P. Misrepresentation and distortion of research in biomedical literature. Proc Natl Acad Sci U S A 2018; 115: 2613–2619. https://doi.org/10.1073/pnas.1710755115. 10.1073/pnas.1710755115 PubMedWeb of Science®Google Scholar 23Andaur Navarro CL, Damen JAA, Takada T, et al. Systematic review finds "spin" practices and poor reporting standards in studies on machine learning-based prediction models. J Clin Epidemiol 2023; 158: 99–110. https://doi.org/10.1016/j.jclinepi.2023.03.024. 10.1016/j.jclinepi.2023.03.024 PubMedWeb of Science®Google Scholar 24Dhiman P, Ma J, Andaur Navarro CL, et al. Overinterpretation of findings in machine learning prediction model studies in oncology: a systematic review. J Clin Epidemiol 2023; 157: 120–133. https://doi.org/10.1016/j.jclinepi.2023.03.012. 10.1016/j.jclinepi.2023.03.012 PubMedWeb of Science®Google Scholar 25Andaur Navarro CL, Damen JA, Ghannad M, et al. SPIN-PM: a consensus framework to evaluate the presence of spin in studies on prediction models. J Clin Epidemiol 2024. Epub 15 April. https://doi.org/10.1016/j.jclinepi.2024.111364. 10.1016/j.jclinepi.2024.111364 Google Scholar 26Andaur Navarro CL, Damen JAA, Takada T, et al. Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review. BMJ 2021; 375: n2281. https://doi.org/10.1136/bmj.n2281. 10.1136/bmj.n2281 PubMedGoogle Scholar 27Andaur Navarro CL, Damen JAA, Takada T, et al. Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review. BMC Med Res Methodol 2022; 22: 12. https://doi.org/10.1186/s12874-021-01469-6. 10.1186/s12874-021-01469-6 PubMedWeb of Science®Google Scholar 28Arina P, Kaczorek MR, Hofmaenner DA, et al. Prediction of complications and prognostication in perioperative medicine: a systematic review and PROBAST assessment of machine learning tools. Anesthesiology 2024; 140: 85–101. https://doi.org/10.1097/ALN.0000000000004764. 10.1097/ALN.0000000000004764 PubMedWeb of Science®Google Scholar 29Gijsberts CM, Groenewegen KA, Hoefer IE, et al. Race/ethnic differences in the associations of the Framingham risk factors with carotid intima-media thickness and cardiovascular events. PLoS One 2015; 10: e0132321. https://doi.org/10.1371/journal.pone.0132321. 10.1371/journal.pone.0132321 PubMedWeb of Science®Google Scholar 30Canto JG, Goldberg RJ, Hand MM, et al. Symptom presentation of women with acute coronary syndromes: myth vs reality. Arch Intern Med 2007; 167: 2405–2413. https://doi.org/10.1001/archinte.167.22.2405. 10.1001/archinte.167.22.2405 PubMedWeb of Science®Google Scholar 31McCarthy AM, Bristol M, Domchek SM, et al. Health care segregation, physician recommendation, and racial disparities in BRCA1/2 testing among women with breast cancer. J Clin Oncol 2016; 34: 2610–2618. https://doi.org/10.1200/JCO.2015.66.0019. 10.1200/JCO.2015.66.0019 CASPubMedWeb of Science®Google Scholar 32Halliday L, Shaw M, Kyzayeva A, Lawlor DA, Nelson SM, Kearns RJ. Socio-economic disadvantage and utilisation of labour epidural analgesia in Scotland: a population-based study. Anaesthesia 2024; 79: 473–485. https://doi.org/10.1111/anae.16236. 10.1111/anae.16236 CASPubMedWeb of Science®Google Scholar 33Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019; 366: 447–453. https://doi.org/10.1126/science.aax2342. 10.1126/science.aax2342 CASPubMedWeb of Science®Google Scholar 34Collins GS, Moons KGM, Dhiman P, et al. Updated guideline for reporting clinical prediction models using regression or machine learning methods: TRIPOD+AI statement. BMJ 2024; 384: e078378. https://doi.org/10.1136/bmj-2023-078378. 10.1136/bmj?2023?078378 Google Scholar Early ViewOnline Version of Record before inclusion in an issue ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助甜蜜水蜜桃采纳,获得10
1秒前
啊呜哈哈哈完成签到,获得积分20
1秒前
3秒前
Jiping Ni完成签到,获得积分20
3秒前
ll发布了新的文献求助10
3秒前
清见的心完成签到,获得积分10
4秒前
yjy完成签到 ,获得积分10
5秒前
东西南北完成签到,获得积分10
6秒前
6秒前
xiaobizaizhi233完成签到 ,获得积分10
7秒前
含蓄文博完成签到 ,获得积分10
8秒前
wen关闭了wen文献求助
8秒前
Akim应助Jiping Ni采纳,获得10
8秒前
思源应助阿辰采纳,获得10
8秒前
雅鹿贝鲁发布了新的文献求助10
9秒前
12秒前
13秒前
14秒前
ll完成签到,获得积分20
14秒前
15秒前
lou1219发布了新的文献求助10
17秒前
BLSZ发布了新的文献求助10
18秒前
Owen应助Wang采纳,获得10
18秒前
oo发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
李飞发布了新的文献求助10
22秒前
Jing完成签到 ,获得积分10
22秒前
24秒前
lou1219完成签到,获得积分10
26秒前
研友_8Y26PL发布了新的文献求助10
28秒前
我是老大应助天降紫微星采纳,获得10
28秒前
30秒前
都是发布了新的文献求助10
31秒前
紧张的三问完成签到 ,获得积分10
31秒前
温柔踏歌发布了新的文献求助10
35秒前
36秒前
37秒前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 2000
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3380932
求助须知:如何正确求助?哪些是违规求助? 2995965
关于积分的说明 8766492
捐赠科研通 2681072
什么是DOI,文献DOI怎么找? 1468318
科研通“疑难数据库(出版商)”最低求助积分说明 678977
邀请新用户注册赠送积分活动 670988