A Comprehensive Prediction Model for Futile Recanalization in AIS Patients Post-Endovascular Therapy: Integrating Clinical, Imaging, and No-Reflow Biomarkers

医学 溶栓 单变量分析 心脏病学 无回流现象 多元分析 放射科 内科学 心肌梗塞 传统PCI
作者
Shuangfeng Huang,Jiali Xu,Haijuan Kang,Wenting Guo,Chang­hong Ren,Alexandra Wehbe,Haiqing Song,Qingfeng Ma,Wenbo Zhao,Yuchuan Ding,Xunming Ji,Sijie Li
出处
期刊:Aging and Disease [Buck Institute for Research on Aging]
被引量:4
标识
DOI:10.14336/ad.2024.0127
摘要

Our study aimed to construct a predictive model for identifying instances of futile recanalization in patients with anterior circulation occlusion acute ischemic stroke (AIS) who achieved complete reperfusion following endovascular therapy. We included 173 AIS patients who attained complete reperfusion, as indicated by a Modified Thrombolysis in Cerebral Infarction (mTICI) scale score of 3. Our approach involved a thorough analysis of clinical factors, imaging biomarkers, and potential no-reflow biomarkers through both univariate and multivariate analyses to identify predictors of futile recanalization. The comprehensive model includes clinical factors such as age, presence of diabetes, admission NIHSS score, and the number of stent retriever passes; imaging biomarkers like poor collaterals; and potential no-reflow biomarkers, notably disrupted blood-brain barrier (OR 4.321, 95% CI 1.794-10.405; p = 0.001), neutrophil-to-lymphocyte ratio (NLR; OR 1.095, 95% CI 1.009-1.188; p = 0.030), and D-dimer (OR 1.134, 95% CI 1.017-1.266; p = 0.024). The model demonstrated high predictive accuracy, with a C-index of 0.901 (95% CI 0.855-0.947) and 0.911 (95% CI 0.863-0.954) in the original and bootstrapping validation samples, respectively. Notably, the comprehensive model showed significantly improved predictive performance over models that did not include no-reflow biomarkers, evidenced by an integrated discrimination improvement of 8.86% (95% CI 4.34%-13.39%; p < 0.001) and a categorized reclassification improvement of 18.38% (95% CI 3.53%-33.23%; p = 0.015). This model, which leverages the potential of no-reflow biomarkers, could be especially beneficial in healthcare settings with limited resources. It provides a valuable tool for predicting futile recanalization, thereby informing clinical decision-making. Future research could explore further refinements to this model and its application in diverse clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
1秒前
神勇秋蝶完成签到,获得积分10
4秒前
4秒前
4秒前
wangruiyang完成签到 ,获得积分10
5秒前
5秒前
hyzzz关注了科研通微信公众号
5秒前
科研通AI6应助沉静语蝶采纳,获得10
5秒前
祝z完成签到,获得积分20
6秒前
6秒前
小二郎应助tianzhen采纳,获得10
7秒前
7秒前
8秒前
8秒前
Seven发布了新的文献求助10
8秒前
相爱就永远在一起完成签到,获得积分10
9秒前
不倦发布了新的文献求助10
10秒前
10秒前
yqsf789发布了新的文献求助10
11秒前
Akim应助我是AY采纳,获得20
12秒前
开兴发布了新的文献求助10
13秒前
dsg完成签到 ,获得积分10
13秒前
16秒前
千里烟泼完成签到,获得积分20
17秒前
18秒前
19秒前
王俊发布了新的文献求助10
19秒前
20秒前
junzheng完成签到,获得积分10
22秒前
meng发布了新的文献求助10
23秒前
23秒前
所所应助刘小胖采纳,获得10
23秒前
23秒前
小二郎应助37采纳,获得10
24秒前
活力的问安完成签到 ,获得积分10
24秒前
june发布了新的文献求助10
25秒前
26秒前
26秒前
如意2023完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194604
求助须知:如何正确求助?哪些是违规求助? 4376857
关于积分的说明 13630554
捐赠科研通 4232015
什么是DOI,文献DOI怎么找? 2321314
邀请新用户注册赠送积分活动 1319495
关于科研通互助平台的介绍 1269832