Engineering oxygen-evolving catalysts for acidic water electrolysis

催化作用 电解 析氧 电解水 氧气 化学工程 化学 材料科学 电化学 工程类 有机化学 电极 电解质 物理化学
作者
Xuan Minh Chau Ta,Thành Trần‐Phú,Thi Kim Anh Nguyen,Manjunath Chatti,Rahman Daiyan
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:11 (2)
标识
DOI:10.1063/5.0200438
摘要

The utilization of water electrolysis for green hydrogen (H2) production, powered by renewable energy, is a promising avenue for sustainable development. Proton-exchange-membrane water electrolysis (PEMWE) stands out as one of the most efficient H2 production technologies. However, implementing it on an industrial scale faces substantial challenges, particularly regarding the oxygen evolution reaction (OER). The OER, a critical process with inherently slow kinetics requiring additional potential, significantly influences overall water-splitting efficiency. Most OER electrocatalysts in PEMWE struggle with poor stability in harsh acidic environments at high oxidative potentials. While rare-earth metal oxides, such as iridium or ruthenium oxides, offer stability in commercial oxygen-evolving electrocatalysts (OECs), their use depends on achieving economically and sustainably viable operations. An alternative approach involves developing low- or non-noble metal-based OECs with sustaining high activity and long-term durability. Although such materials currently exhibit lower activity and stability than noble-based OECs, notable progress has been made in enhancing their performance. This review provides an overview of recent advancements in designing acidic-stable OECs based on low or without noble metal contents. It delves into the thermodynamics and degradation mechanisms of OECs in acidic media, evaluation parameters for activity and stability, strategies for developing active and acid-stable OECs, and the challenges and opportunities of acid water electrolysis. Through a detailed analysis of these aspects, the review aims to identify opportunities for engineering actively durable OECs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
吃吃货发布了新的文献求助30
1秒前
王鑫完成签到,获得积分10
2秒前
2秒前
Ava应助oyjq采纳,获得10
2秒前
微笑采文发布了新的文献求助10
4秒前
希望天下0贩的0应助三余采纳,获得10
5秒前
dada完成签到,获得积分20
6秒前
英姑应助sharkboy采纳,获得10
6秒前
aaa完成签到 ,获得积分10
6秒前
饭饭完成签到,获得积分10
7秒前
Jenny完成签到,获得积分10
7秒前
a成发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
10秒前
10秒前
8R60d8应助zeke采纳,获得10
11秒前
听话的凡完成签到,获得积分10
12秒前
曾经若枫发布了新的文献求助10
13秒前
ze发布了新的文献求助10
14秒前
1592541发布了新的文献求助10
14秒前
14秒前
oyjq发布了新的文献求助10
14秒前
迷路的涑发布了新的文献求助10
15秒前
火星上星星完成签到 ,获得积分10
16秒前
ljc完成签到,获得积分10
18秒前
归tu发布了新的文献求助10
18秒前
19秒前
从容的夏瑶完成签到,获得积分10
19秒前
白石溪完成签到,获得积分10
20秒前
huihuiwang完成签到,获得积分10
21秒前
21秒前
可爱的柜子完成签到,获得积分10
21秒前
冰冰咖啡发布了新的文献求助10
23秒前
Jasper应助xiaogang127采纳,获得10
23秒前
Robin完成签到,获得积分20
23秒前
思源应助归tu采纳,获得10
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234027
求助须知:如何正确求助?哪些是违规求助? 2880431
关于积分的说明 8215492
捐赠科研通 2547980
什么是DOI,文献DOI怎么找? 1377371
科研通“疑难数据库(出版商)”最低求助积分说明 647869
邀请新用户注册赠送积分活动 623248