Alterations in dynamic regional homogeneity within default mode network in patients with thyroid-associated ophthalmopathy

默认模式网络 医学 楔前 静息状态功能磁共振成像 大脑活动与冥想 内科学 神经科学 听力学 眼科 心脏病学 放射科 心理学 功能磁共振成像 精神科 脑电图
作者
Ping-Hong Lai,Hu R,Xin Huang
出处
期刊:Neuroreport [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/wnr.0000000000002056
摘要

Thyroid-associated ophthalmopathy (TAO) is a significant autoimmune eye disease known for causing exophthalmos and substantial optic nerve damage. Prior investigations have solely focused on static functional MRI (fMRI) scans of the brain in TAO patients, neglecting the assessment of temporal variations in local brain activity. This study aimed to characterize alterations in dynamic regional homogeneity (dReHo) in TAO patients and differentiate between TAO patients and healthy controls using support vector machine (SVM) classification. Thirty-two patients with TAO and 32 healthy controls underwent resting-state fMRI scans. We calculated dReHo using sliding-window methods to evaluate changes in regional brain activity and compared these findings between the two groups. Subsequently, we employed SVM, a machine learning algorithm, to investigate the potential use of dReHo maps as diagnostic markers for TAO. Compared to healthy controls, individuals with active TAO demonstrated significantly higher dReHo values in the right angular gyrus, left precuneus, right inferior parietal as well as the left superior parietal gyrus. The SVM model demonstrated an accuracy ranging from 65.62 to 68.75% in distinguishing between TAO patients and healthy controls based on dReHo variability in these identified brain regions, with an area under the curve of 0.70 to 0.76. TAO patients showed increased dReHo in default mode network-related brain regions. The accuracy of classifying TAO patients and healthy controls based on dReHo was notably high. These results offer new insights for investigating the pathogenesis and clinical diagnostic classification of individuals with TAO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古药完成签到,获得积分10
4秒前
NexusExplorer应助权志龙采纳,获得10
4秒前
6秒前
勤恳的若翠完成签到,获得积分10
7秒前
7秒前
8秒前
有魅力荟发布了新的文献求助10
9秒前
9秒前
彭于晏应助wxl采纳,获得10
9秒前
FashionBoy应助爽o采纳,获得10
9秒前
田様应助喜东东采纳,获得10
10秒前
多情的续完成签到,获得积分10
10秒前
科研通AI2S应助999采纳,获得10
11秒前
KTaoL发布了新的文献求助10
12秒前
12秒前
14秒前
Orange应助WWW采纳,获得10
14秒前
15秒前
讴歌完成签到,获得积分10
15秒前
Ava应助动人的ccc采纳,获得10
15秒前
赘婿应助天线短路宝宝采纳,获得10
16秒前
大个应助可可杨采纳,获得10
16秒前
华仔应助xlz采纳,获得10
16秒前
脑洞疼应助逢投必中采纳,获得10
17秒前
18秒前
欢喜发卡发布了新的文献求助10
19秒前
haowu发布了新的文献求助10
20秒前
wxl完成签到,获得积分20
20秒前
21秒前
腼腆的洪纲完成签到,获得积分10
25秒前
动人的ccc发布了新的文献求助10
26秒前
27秒前
我是老大应助个性的帽子采纳,获得10
27秒前
28秒前
28秒前
29秒前
niuhulu_yue完成签到,获得积分10
30秒前
30秒前
32秒前
逢投必中发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157400
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878622
捐赠科研通 2467207
什么是DOI,文献DOI怎么找? 1313264
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919