Formation of nanocrystalline and nanolaminate structures in a twinning induced plasticity Ti-12Mo alloy: The role played by {332} 〈113〉 twinning

晶体孪晶 材料科学 纳米晶材料 可塑性 合金 冶金 复合材料 微观结构 纳米技术
作者
Yue Wang,Fengkai Yan,Minjie Lai,Xiuyan Li
出处
期刊:Acta Materialia [Elsevier]
卷期号:276: 120078-120078 被引量:6
标识
DOI:10.1016/j.actamat.2024.120078
摘要

Grain refinement is an effective strategy to strengthen metastable β titanium alloys. {332}<113> twinning, a typical deformation mode, its role on grain refinement still remains unelucidated. Here, we produced a gradient nanostructured layer with a depth of 800 μm in a metastable twinning induced plasticity β-Ti-12Mo (wt.%) alloy by means of surface mechanical rolling treatment. We found that {332}<113> deformation twinning, mainly dominated the deformation at moderate strain and strain rates, refining coarse grains into submicro-structures. With increasing strain and strain rates, dislocation slip instead of {332}<113> twinning prevailed. These dislocations were first arranged into extended boundaries and then into laminated structures to coordinate deformation. Eventually, shear banding and fragmentation of laminates result in the formation of nanocrystalline with size of 34 ± 8 nm. The nanostructured Ti-12Mo alloy exhibited the high hardness of 4.9 GPa at subsurface. The surface hardness decreased to 4.4 GPa which was mainly caused by the inhibition of stress-induced martensitic transformation α'' and the occurrence of its reversal transformation due to adiabatic heating induced by the high strain rate. This work expands our knowledge on strengthening β titanium alloys by {332}<113> twinning induced grain refinement at different deformation conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tkxfy完成签到,获得积分10
刚刚
顺利毕业耶耶耶完成签到,获得积分10
刚刚
QAQ发布了新的文献求助30
1秒前
Rn发布了新的文献求助10
1秒前
2秒前
3秒前
Leon完成签到,获得积分10
3秒前
221完成签到,获得积分10
3秒前
华仔完成签到,获得积分10
3秒前
iNk应助酷酷的山雁采纳,获得10
6秒前
陈慧钦发布了新的文献求助10
6秒前
6秒前
tiatia应助5999采纳,获得10
6秒前
8秒前
香蕉觅云应助Lee采纳,获得10
9秒前
充电宝应助研友_8Kedgn采纳,获得10
10秒前
研研发布了新的文献求助10
10秒前
汉堡包应助blueskyzhi采纳,获得10
10秒前
皮蛋完成签到,获得积分10
12秒前
12秒前
鱼贝贝完成签到 ,获得积分10
14秒前
懒洋洋完成签到 ,获得积分10
16秒前
yaxuandeng完成签到,获得积分10
17秒前
17秒前
浮游应助wocao采纳,获得10
18秒前
Lee发布了新的文献求助10
20秒前
21秒前
deeperection发布了新的文献求助10
23秒前
25秒前
丘比特应助ahfjk采纳,获得10
26秒前
youxiu完成签到 ,获得积分10
26秒前
27秒前
dolabmu完成签到 ,获得积分10
28秒前
28秒前
29秒前
jiaxiangxia完成签到 ,获得积分10
30秒前
wang发布了新的文献求助10
30秒前
31秒前
HuSP完成签到,获得积分10
33秒前
菜菜博士发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429