电解质
材料科学
阳极
无定形固体
电池(电)
锂(药物)
电极
过渡金属
硒化物
准固态
化学工程
锂离子电池
无机化学
催化作用
冶金
有机化学
物理化学
化学
热力学
功率(物理)
物理
工程类
医学
硒
色素敏化染料
内分泌学
作者
Ju Hyeong Kim,Soohwan Kim,Yun Chan Kang,Vilas G. Pol
出处
期刊:Nano Energy
[Elsevier]
日期:2024-09-01
卷期号:128: 109823-109823
标识
DOI:10.1016/j.nanoen.2024.109823
摘要
The demand for lithium-ion batteries (LIBs) that function reliably in extreme environments has driven research efforts towards optimizing electrolyte composition, solid electrolyte interphase formation, and electrode materials. In this study, we pioneer an approach that utilizes amorphous-structured multiple anionic transition metal compounds as anodes, strategically paired with a cyclopentyl methyl ether (CPME)-based electrolyte, known for facilitating efficient Li+ conduction at low-temperatures. The synergistic effect yields exceptional LIB performance over a wide range of operating temperatures, stemming from the unique iron hydroxyl selenide (Fe(OH)Se) anode with a layered structure, enhanced ion diffusion pathways, and reduced energy requirements for conversion reactions combined with the CPME-based electrolyte. Specifically, Li//Fe(OH)Se LIBs with the CPME-based electrolyte exhibits initial discharge capacities of 974.7 mA h g-1 (at 1.0 A g-1) at room temperature, 285.2 mA h g-1 (at 0.025 A g-1) at −80 ℃, and 1066.9 mA h g-1 (at 0.2 A g-1) at 45 ℃. Notably, even at the extreme low-temperature of −100 ℃, these LIBs remain operable.
科研通智能强力驱动
Strongly Powered by AbleSci AI