杰纳斯
介孔二氧化硅
介孔材料
化学
纳米技术
材料科学
有机化学
催化作用
作者
Beatriz Mayol,Sandra Pradana-López,Alba García,Cristina de la Torre,Paula Díez,Anabel Villalonga,Carlos Anillo,Diana Vilela,Alfredo Sánchez,Paloma Martínez‐Ruiz,Ramón Martínez‐Máñez,Reynaldo Villalonga
标识
DOI:10.1016/j.jcis.2024.05.134
摘要
Here, we report the preparation of a novel Janus nanoparticle with opposite Ir and mesoporous silica nanoparticles through a partial surface masking with toposelective modification method. This nanomaterial was employed to construct an enzyme-powered nanomachine with self-propulsion properties for on-command delivery. The cargo-loaded nanoparticle was provided with a pH-sensitive gate and unit control at the mesoporous face by first attaching boronic acid residues and further immobilization of glucose oxidase through reversible boronic acid esters with the carbohydrate residues of the glycoenzyme. Addition of glucose leads to the enzymatic production of H2O2 and gluconic acid, being the first compound catalytically decomposed at the Ir nanoparticle face producing O2 and causing the nanomachine propulsion. Gluconic acid leads to a pH reduction at the nanomachine microenvironment causing the disruption of the gating mechanism with the subsequent cargo release. This work demonstrates that enzyme-mediated self-propulsion improved release efficiency being this nanomotor successfully employed for the smart release of Doxorubicin in HeLa cancer cells .
科研通智能强力驱动
Strongly Powered by AbleSci AI