Deep Learning of Transition Probability Densities for Stochastic Asset Models with Applications in Option Pricing

资本资产定价模型 过渡(遗传学) 计量经济学 金融经济学 期权估价 经济 计算机科学 生物化学 基因 化学
作者
Haozhe Su,M. V. Tretyakov,David Newton
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2022.01448
摘要

Transition probability density functions (TPDFs) are fundamental to computational finance, including option pricing and hedging. Advancing recent work in deep learning, we develop novel neural TPDF generators through solving backward Kolmogorov equations in parametric space for cumulative probability functions. The generators are ultra-fast, very accurate and can be trained for any asset model described by stochastic differential equations. These are “single solve,” so they do not require retraining when parameters of the stochastic model are changed (e.g., recalibration of volatility). Once trained, the neural TDPF generators can be transferred to less powerful computers where they can be used for e.g. option pricing at speeds as fast as if the TPDF were known in a closed form. We illustrate the computational efficiency of the proposed neural approximations of TPDFs by inserting them into numerical option pricing methods. We demonstrate a wide range of applications including the Black-Scholes-Merton model, the standard Heston model, the SABR model, and jump-diffusion models. These numerical experiments confirm the ultra-fast speed and high accuracy of the developed neural TPDF generators. This paper was accepted by Kay Giesecke, finance. Funding: H. Su received research funding support from Nottingham Business School at Nottingham Trent University. M. V. Tretyakov was supported by the Engineering and Physical Sciences Research Council [Grant EP/X022617/1]. D. P. Newton received research funding support from the School of Management at Bath University. Supplemental Material: The online appendices and data files are available at https://doi.org/10.1287/mnsc.2022.01448 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
杨玉轩发布了新的文献求助10
刚刚
韩金龙完成签到,获得积分10
1秒前
所所应助洁净海莲采纳,获得10
1秒前
1秒前
陈槊诸发布了新的文献求助10
1秒前
田様应助acc采纳,获得10
1秒前
夏仁培完成签到,获得积分20
2秒前
星辰大海应助能动四眼仔采纳,获得10
2秒前
csl发布了新的文献求助10
2秒前
2秒前
思源应助vidgers采纳,获得10
3秒前
确觉发布了新的文献求助10
3秒前
3秒前
4秒前
3n同学发布了新的文献求助10
4秒前
6秒前
kyan完成签到,获得积分10
6秒前
领导范儿应助暮封采纳,获得10
7秒前
英俊的铭应助烂漫臻采纳,获得10
7秒前
科研通AI5应助没头脑采纳,获得10
8秒前
paparazzi221发布了新的文献求助10
9秒前
coin完成签到,获得积分10
9秒前
正直幼菱完成签到,获得积分10
10秒前
枯草芽孢完成签到,获得积分10
10秒前
NexusExplorer应助水博士采纳,获得10
10秒前
10秒前
10秒前
10秒前
黑大帅发布了新的文献求助10
10秒前
_呱_完成签到,获得积分10
11秒前
11秒前
太阳完成签到 ,获得积分10
12秒前
任博文完成签到 ,获得积分10
13秒前
多情捕完成签到,获得积分10
14秒前
14秒前
14秒前
Orange应助anan采纳,获得10
14秒前
paparazzi221完成签到,获得积分0
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4090
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Sea Surface Kinematics From Near-Nadir Radar Measurements 800
J'AI COMBATTU POUR MAO // ANNA WANG 660
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3751520
求助须知:如何正确求助?哪些是违规求助? 3295151
关于积分的说明 10088929
捐赠科研通 3010238
什么是DOI,文献DOI怎么找? 1653094
邀请新用户注册赠送积分活动 787984
科研通“疑难数据库(出版商)”最低求助积分说明 752502