Understanding the sensing performance alteration mechanism of a Yarn-based strain sensor after encapsulation and an effective encapsulation structural designs

封装(网络) 材料科学 纳米技术 纱线 计算机科学 复合材料 计算机网络
作者
Fei Huang,Chen Huang,Fenye Meng,Kean C. Aw,Xiong Yan,Jiyong Hu
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:697: 134501-134501
标识
DOI:10.1016/j.colsurfa.2024.134501
摘要

Microcrack-based yarn strain sensors with non-uniform and rough structures offer high sensitivity and flexibility, making them promising for wearable electronics. However, their low mechanical endurance limits their usability. Encapsulating is a common method used to protect the conductive network and enhance environmental stability, but its impact on sensing performance is poorly understood. This work investigates the effects of thickness and tensile modulus of conformal encapsulation layer on the performance of double-threaded conductive yarns (CNT/DTY), especially focusing on the thickness variation coefficient of the conformal encapsulation layer. The results showed that the encapsulation layer affects the mechanical and electrical properties of yarn sensors. The permeation of Ecoflex transforms the conductive layer into Ecoflex/CNT composites, increasing the sensor's initial electrical resistance. The encapsulation layer changes the rate of strain transfer from the substrate to the conductive layer, slowing strain localization. Increasing the thickness variation coefficient of the encapsulation layer improves the maximum strain range, linearity and repeatability, while decreasing the sensitivity and electromechanical hysteresis. An encapsulation layer with higher tensile modulus significantly reduces sensitivity, linearity and increases electromechanical hysteresis. Optimizing the encapsulation layer not only provides the sensors with robust mechanical support and protection but also enhance its sensing properties, including excellent water resistance. Moreover, encapsulated yarn sensors showed good potential in joint motion monitoring in water, gait analysis, and gesture recognition for wearable applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖头鱼完成签到,获得积分10
1秒前
1秒前
wut发布了新的文献求助10
1秒前
小赖不赖发布了新的文献求助10
1秒前
serendipity发布了新的文献求助10
2秒前
GAOYUwenzhang发布了新的文献求助10
2秒前
子车一手完成签到,获得积分10
2秒前
科研通AI6应助精明书雁采纳,获得10
2秒前
科研通AI6应助吃的饱饱呀采纳,获得10
3秒前
Tanya47应助追光者采纳,获得10
4秒前
彭大啦啦完成签到,获得积分10
4秒前
张远幸发布了新的文献求助10
4秒前
李健的小迷弟应助Channing采纳,获得20
4秒前
guozi完成签到,获得积分10
4秒前
潇湘雪月完成签到,获得积分10
4秒前
4秒前
6秒前
瑾辰完成签到,获得积分10
6秒前
6秒前
sharon完成签到,获得积分10
6秒前
钱钱完成签到,获得积分10
7秒前
7秒前
大方雪糕发布了新的文献求助10
7秒前
投石问路完成签到,获得积分10
7秒前
Hanoi347应助jingjintian采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
芮rich完成签到,获得积分10
8秒前
MZ完成签到,获得积分0
8秒前
一言一木完成签到,获得积分10
8秒前
我是老大应助洋葱采纳,获得10
8秒前
瑾辰发布了新的文献求助10
9秒前
9秒前
阿卡林完成签到,获得积分10
9秒前
daaqiu发布了新的文献求助10
9秒前
9秒前
9秒前
tt发布了新的文献求助10
9秒前
科研通AI6应助yy采纳,获得10
10秒前
Jasper应助梨膏糖采纳,获得10
10秒前
mayonnaise完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652169
求助须知:如何正确求助?哪些是违规求助? 4786896
关于积分的说明 15058821
捐赠科研通 4810805
什么是DOI,文献DOI怎么找? 2573410
邀请新用户注册赠送积分活动 1529283
关于科研通互助平台的介绍 1488184