Understanding the sensing performance alteration mechanism of a Yarn-based strain sensor after encapsulation and an effective encapsulation structural designs

封装(网络) 材料科学 纳米技术 纱线 计算机科学 复合材料 计算机网络
作者
Fei Huang,Chen Huang,Fenye Meng,Kean C. Aw,Xiong Yan,Jiyong Hu
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:697: 134501-134501
标识
DOI:10.1016/j.colsurfa.2024.134501
摘要

Microcrack-based yarn strain sensors with non-uniform and rough structures offer high sensitivity and flexibility, making them promising for wearable electronics. However, their low mechanical endurance limits their usability. Encapsulating is a common method used to protect the conductive network and enhance environmental stability, but its impact on sensing performance is poorly understood. This work investigates the effects of thickness and tensile modulus of conformal encapsulation layer on the performance of double-threaded conductive yarns (CNT/DTY), especially focusing on the thickness variation coefficient of the conformal encapsulation layer. The results showed that the encapsulation layer affects the mechanical and electrical properties of yarn sensors. The permeation of Ecoflex transforms the conductive layer into Ecoflex/CNT composites, increasing the sensor's initial electrical resistance. The encapsulation layer changes the rate of strain transfer from the substrate to the conductive layer, slowing strain localization. Increasing the thickness variation coefficient of the encapsulation layer improves the maximum strain range, linearity and repeatability, while decreasing the sensitivity and electromechanical hysteresis. An encapsulation layer with higher tensile modulus significantly reduces sensitivity, linearity and increases electromechanical hysteresis. Optimizing the encapsulation layer not only provides the sensors with robust mechanical support and protection but also enhance its sensing properties, including excellent water resistance. Moreover, encapsulated yarn sensors showed good potential in joint motion monitoring in water, gait analysis, and gesture recognition for wearable applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦悦发布了新的文献求助10
1秒前
1秒前
xhsz1111完成签到 ,获得积分10
1秒前
666完成签到,获得积分20
4秒前
4秒前
5秒前
5秒前
佐原新之助关注了科研通微信公众号
5秒前
666发布了新的文献求助10
6秒前
8秒前
听雨发布了新的文献求助10
9秒前
jjj完成签到,获得积分10
9秒前
开朗满天发布了新的文献求助10
10秒前
12秒前
菠萝冰棒完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
Kx发布了新的文献求助10
15秒前
zz完成签到 ,获得积分10
16秒前
爱学习的杜杜完成签到,获得积分10
16秒前
科研通AI2S应助小玄子采纳,获得10
16秒前
18秒前
18秒前
果果发布了新的文献求助20
19秒前
勤劳亦瑶发布了新的文献求助10
19秒前
20秒前
Owen应助唐秋秋采纳,获得10
20秒前
21秒前
21秒前
爱笑擎发布了新的文献求助10
22秒前
syt完成签到,获得积分10
23秒前
顺心醉蝶完成签到,获得积分10
23秒前
在水一方应助Kx采纳,获得10
23秒前
24秒前
HEIKU应助aa采纳,获得10
24秒前
HEIKU应助aa采纳,获得10
24秒前
橙子发布了新的文献求助10
25秒前
25秒前
whh发布了新的文献求助10
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328