Understanding the sensing performance alteration mechanism of a Yarn-based strain sensor after encapsulation and an effective encapsulation structural designs

封装(网络) 材料科学 纳米技术 纱线 计算机科学 复合材料 计算机网络
作者
Fei Huang,Chen Huang,Fenye Meng,Kean C. Aw,Xiong Yan,Jiyong Hu
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:697: 134501-134501
标识
DOI:10.1016/j.colsurfa.2024.134501
摘要

Microcrack-based yarn strain sensors with non-uniform and rough structures offer high sensitivity and flexibility, making them promising for wearable electronics. However, their low mechanical endurance limits their usability. Encapsulating is a common method used to protect the conductive network and enhance environmental stability, but its impact on sensing performance is poorly understood. This work investigates the effects of thickness and tensile modulus of conformal encapsulation layer on the performance of double-threaded conductive yarns (CNT/DTY), especially focusing on the thickness variation coefficient of the conformal encapsulation layer. The results showed that the encapsulation layer affects the mechanical and electrical properties of yarn sensors. The permeation of Ecoflex transforms the conductive layer into Ecoflex/CNT composites, increasing the sensor's initial electrical resistance. The encapsulation layer changes the rate of strain transfer from the substrate to the conductive layer, slowing strain localization. Increasing the thickness variation coefficient of the encapsulation layer improves the maximum strain range, linearity and repeatability, while decreasing the sensitivity and electromechanical hysteresis. An encapsulation layer with higher tensile modulus significantly reduces sensitivity, linearity and increases electromechanical hysteresis. Optimizing the encapsulation layer not only provides the sensors with robust mechanical support and protection but also enhance its sensing properties, including excellent water resistance. Moreover, encapsulated yarn sensors showed good potential in joint motion monitoring in water, gait analysis, and gesture recognition for wearable applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chopin完成签到,获得积分20
刚刚
刚刚
研友_VZG7GZ应助大萌采纳,获得10
刚刚
大模型应助jammszs采纳,获得10
刚刚
1秒前
平常树叶完成签到,获得积分10
1秒前
Obliviate完成签到,获得积分10
1秒前
chenyou完成签到,获得积分10
2秒前
pb完成签到,获得积分10
3秒前
ying完成签到,获得积分10
3秒前
3秒前
xiaoxu完成签到,获得积分10
3秒前
运气爆彭完成签到,获得积分10
4秒前
传奇3应助Kleen采纳,获得10
4秒前
隐形的星月完成签到,获得积分10
4秒前
煎饼果子完成签到 ,获得积分10
4秒前
缓慢千易完成签到,获得积分10
5秒前
qiuziyun完成签到,获得积分10
5秒前
LmyHusband完成签到,获得积分10
5秒前
Jincen发布了新的文献求助10
6秒前
研友_24789完成签到,获得积分10
6秒前
文献啊文献完成签到,获得积分10
6秒前
HMO_eee发布了新的文献求助10
6秒前
Kelly完成签到,获得积分10
7秒前
大模型应助布丁圆团采纳,获得10
8秒前
不想科研完成签到,获得积分10
8秒前
宣以晴完成签到,获得积分10
9秒前
雨辰完成签到 ,获得积分10
9秒前
小瓢虫完成签到 ,获得积分10
9秒前
俭朴的乐巧完成签到 ,获得积分10
9秒前
littlejin完成签到 ,获得积分10
9秒前
薛定谔的猫爱摸鱼完成签到,获得积分10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
可靠的难胜完成签到,获得积分10
11秒前
魔女完成签到,获得积分10
11秒前
慈祥的花瓣完成签到,获得积分10
11秒前
雪花完成签到,获得积分10
12秒前
单薄乐珍完成签到 ,获得积分0
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977