Understanding the sensing performance alteration mechanism of a Yarn-based strain sensor after encapsulation and an effective encapsulation structural designs

封装(网络) 材料科学 纳米技术 纱线 计算机科学 复合材料 计算机网络
作者
Fei Huang,Chen Huang,Fenye Meng,Kean C. Aw,Xiong Yan,Jiyong Hu
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:697: 134501-134501
标识
DOI:10.1016/j.colsurfa.2024.134501
摘要

Microcrack-based yarn strain sensors with non-uniform and rough structures offer high sensitivity and flexibility, making them promising for wearable electronics. However, their low mechanical endurance limits their usability. Encapsulating is a common method used to protect the conductive network and enhance environmental stability, but its impact on sensing performance is poorly understood. This work investigates the effects of thickness and tensile modulus of conformal encapsulation layer on the performance of double-threaded conductive yarns (CNT/DTY), especially focusing on the thickness variation coefficient of the conformal encapsulation layer. The results showed that the encapsulation layer affects the mechanical and electrical properties of yarn sensors. The permeation of Ecoflex transforms the conductive layer into Ecoflex/CNT composites, increasing the sensor's initial electrical resistance. The encapsulation layer changes the rate of strain transfer from the substrate to the conductive layer, slowing strain localization. Increasing the thickness variation coefficient of the encapsulation layer improves the maximum strain range, linearity and repeatability, while decreasing the sensitivity and electromechanical hysteresis. An encapsulation layer with higher tensile modulus significantly reduces sensitivity, linearity and increases electromechanical hysteresis. Optimizing the encapsulation layer not only provides the sensors with robust mechanical support and protection but also enhance its sensing properties, including excellent water resistance. Moreover, encapsulated yarn sensors showed good potential in joint motion monitoring in water, gait analysis, and gesture recognition for wearable applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
熊猫小肿完成签到,获得积分10
2秒前
立华奏完成签到,获得积分10
2秒前
李存发布了新的文献求助10
2秒前
ASH完成签到 ,获得积分10
3秒前
小蘑菇应助qianqian采纳,获得10
4秒前
YIYI发布了新的文献求助10
6秒前
6秒前
6秒前
TT完成签到,获得积分10
6秒前
小二郎应助李存采纳,获得10
7秒前
7秒前
7秒前
莫欣宇完成签到 ,获得积分10
7秒前
AllenZ发布了新的文献求助10
8秒前
8秒前
打打应助晓澈采纳,获得10
9秒前
10秒前
jk258发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
YIYI完成签到,获得积分20
12秒前
仰泳鲫鱼发布了新的文献求助10
12秒前
玄远完成签到,获得积分10
13秒前
万能图书馆应助tjnusq采纳,获得10
14秒前
李存完成签到,获得积分10
14秒前
15秒前
16秒前
ding应助炙热的便当采纳,获得10
16秒前
qianqian发布了新的文献求助10
16秒前
叶绯发布了新的文献求助10
17秒前
核桃发布了新的文献求助10
17秒前
18秒前
小蘑菇应助jk258采纳,获得10
18秒前
阿俊1212完成签到,获得积分20
18秒前
北巷完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
lsong完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627261
求助须知:如何正确求助?哪些是违规求助? 4713332
关于积分的说明 14961607
捐赠科研通 4784189
什么是DOI,文献DOI怎么找? 2554779
邀请新用户注册赠送积分活动 1516304
关于科研通互助平台的介绍 1476657