Understanding the sensing performance alteration mechanism of a Yarn-based strain sensor after encapsulation and an effective encapsulation structural designs

封装(网络) 材料科学 纳米技术 纱线 计算机科学 复合材料 计算机网络
作者
Fei Huang,Chen Huang,Fenye Meng,Kean C. Aw,Xiong Yan,Jiyong Hu
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:697: 134501-134501
标识
DOI:10.1016/j.colsurfa.2024.134501
摘要

Microcrack-based yarn strain sensors with non-uniform and rough structures offer high sensitivity and flexibility, making them promising for wearable electronics. However, their low mechanical endurance limits their usability. Encapsulating is a common method used to protect the conductive network and enhance environmental stability, but its impact on sensing performance is poorly understood. This work investigates the effects of thickness and tensile modulus of conformal encapsulation layer on the performance of double-threaded conductive yarns (CNT/DTY), especially focusing on the thickness variation coefficient of the conformal encapsulation layer. The results showed that the encapsulation layer affects the mechanical and electrical properties of yarn sensors. The permeation of Ecoflex transforms the conductive layer into Ecoflex/CNT composites, increasing the sensor's initial electrical resistance. The encapsulation layer changes the rate of strain transfer from the substrate to the conductive layer, slowing strain localization. Increasing the thickness variation coefficient of the encapsulation layer improves the maximum strain range, linearity and repeatability, while decreasing the sensitivity and electromechanical hysteresis. An encapsulation layer with higher tensile modulus significantly reduces sensitivity, linearity and increases electromechanical hysteresis. Optimizing the encapsulation layer not only provides the sensors with robust mechanical support and protection but also enhance its sensing properties, including excellent water resistance. Moreover, encapsulated yarn sensors showed good potential in joint motion monitoring in water, gait analysis, and gesture recognition for wearable applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助威武的大象采纳,获得10
刚刚
makabakap发布了新的文献求助10
1秒前
八万完成签到,获得积分10
1秒前
大反应釜发布了新的文献求助10
1秒前
2秒前
3秒前
刘震完成签到,获得积分10
4秒前
汤襄完成签到,获得积分10
5秒前
6秒前
科研通AI6.1应助贪玩板凳采纳,获得10
6秒前
6秒前
moiumuio完成签到,获得积分0
6秒前
6秒前
隐形曼青应助姜茶采纳,获得10
7秒前
bluhenden发布了新的文献求助10
7秒前
昏睡的嵩应助bei采纳,获得10
7秒前
科研通AI6.1应助jianwu采纳,获得100
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
科研狗完成签到 ,获得积分10
9秒前
无私的黄豆完成签到 ,获得积分10
9秒前
himon完成签到,获得积分10
9秒前
小二郎应助邦尼老师采纳,获得10
9秒前
9秒前
共享精神应助zx采纳,获得10
10秒前
健壮的凌蝶完成签到 ,获得积分10
10秒前
10秒前
殷勤的小松鼠完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
tree完成签到,获得积分10
11秒前
Xhhaai发布了新的文献求助10
11秒前
好苗子发布了新的文献求助10
12秒前
英俊的铭应助小段采纳,获得30
12秒前
12秒前
12秒前
深情安青应助yuyu采纳,获得10
14秒前
14秒前
奔奔完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785064
求助须知:如何正确求助?哪些是违规求助? 5685309
关于积分的说明 15466430
捐赠科研通 4914115
什么是DOI,文献DOI怎么找? 2645093
邀请新用户注册赠送积分活动 1592886
关于科研通互助平台的介绍 1547281