Understanding the sensing performance alteration mechanism of a Yarn-based strain sensor after encapsulation and an effective encapsulation structural designs

封装(网络) 材料科学 纳米技术 纱线 计算机科学 复合材料 计算机网络
作者
Fei Huang,Chen Huang,Fenye Meng,Kean C. Aw,Xiong Yan,Jiyong Hu
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:697: 134501-134501
标识
DOI:10.1016/j.colsurfa.2024.134501
摘要

Microcrack-based yarn strain sensors with non-uniform and rough structures offer high sensitivity and flexibility, making them promising for wearable electronics. However, their low mechanical endurance limits their usability. Encapsulating is a common method used to protect the conductive network and enhance environmental stability, but its impact on sensing performance is poorly understood. This work investigates the effects of thickness and tensile modulus of conformal encapsulation layer on the performance of double-threaded conductive yarns (CNT/DTY), especially focusing on the thickness variation coefficient of the conformal encapsulation layer. The results showed that the encapsulation layer affects the mechanical and electrical properties of yarn sensors. The permeation of Ecoflex transforms the conductive layer into Ecoflex/CNT composites, increasing the sensor's initial electrical resistance. The encapsulation layer changes the rate of strain transfer from the substrate to the conductive layer, slowing strain localization. Increasing the thickness variation coefficient of the encapsulation layer improves the maximum strain range, linearity and repeatability, while decreasing the sensitivity and electromechanical hysteresis. An encapsulation layer with higher tensile modulus significantly reduces sensitivity, linearity and increases electromechanical hysteresis. Optimizing the encapsulation layer not only provides the sensors with robust mechanical support and protection but also enhance its sensing properties, including excellent water resistance. Moreover, encapsulated yarn sensors showed good potential in joint motion monitoring in water, gait analysis, and gesture recognition for wearable applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧萧应助fanguojun采纳,获得20
1秒前
1秒前
请问请问完成签到,获得积分20
2秒前
Jenifer完成签到,获得积分10
2秒前
Horizon完成签到,获得积分10
4秒前
4秒前
4秒前
浮浮世世发布了新的文献求助50
5秒前
浮游应助正直随阴采纳,获得10
5秒前
TRTHHRTZ发布了新的文献求助10
9秒前
10秒前
狂野飞柏完成签到 ,获得积分10
10秒前
害羞静柏完成签到,获得积分10
11秒前
11秒前
紫伊完成签到,获得积分10
12秒前
Aprial发布了新的文献求助10
12秒前
Cradoc发布了新的文献求助10
12秒前
追寻梦之完成签到 ,获得积分10
13秒前
长尾巴的人类完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
16秒前
李一琳完成签到,获得积分10
16秒前
CipherSage应助LNF采纳,获得10
16秒前
123456完成签到,获得积分10
16秒前
王小一发布了新的文献求助10
17秒前
刘海杨完成签到,获得积分20
17秒前
movoandy发布了新的文献求助10
17秒前
科研通AI6应助11采纳,获得30
19秒前
Gcia完成签到 ,获得积分10
19秒前
22秒前
Aprial完成签到,获得积分10
22秒前
23秒前
kiminonawa发布了新的文献求助10
23秒前
23秒前
无极微光应助辣辣采纳,获得20
25秒前
26秒前
Cradoc完成签到,获得积分10
28秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511461
求助须知:如何正确求助?哪些是违规求助? 4606072
关于积分的说明 14497389
捐赠科研通 4541296
什么是DOI,文献DOI怎么找? 2488463
邀请新用户注册赠送积分活动 1470484
关于科研通互助平台的介绍 1442866