TM-OKC: An Unsupervised Topic Model for Text in Online Knowledge Communities

计算机科学 主题模型 数据科学 情报检索 自然语言处理
作者
Dongcheng Zhang,Kunpeng Zhang,Yi Yang,David A. Schweidel
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:48 (3): 931-978 被引量:3
标识
DOI:10.25300/misq/2023/17885
摘要

Online knowledge communities (OKCs), such as question-and-answer sites, have become increasingly popular venues for knowledge sharing. Accordingly, it is necessary for researchers and practitioners to develop effective and efficient text analysis tools to understand the massive amount of user-generated content (UGC) on OKCs. Unsupervised topic modeling has been widely adopted to extract human-interpretable latent topics embedded in texts. These identified topics can be further used in subsequent analysis and managerial practices. However, existing generic topic models that assume documents are independent are inappropriate for analyzing OKCs where structural relationships exist between questions and answers. Thus, a new method is needed to fill this research gap. In this study, we propose a new topic model specifically designed for the text in OKCs. We make three primary contributions to the research on topic modeling in this context. First, we build a general and flexible Bayesian framework to explicitly model structural and temporal dependencies among texts. Second, we statistically demonstrate the approximate model inference using mean-field and coordinate ascent algorithms. Third, we showcase the practical value and relative merit of our method via a specific downstream task (i.e., user profiling). The proposed model is illustrated using two real-world datasets from well-known OKCs (i.e., Stack Exchange and Quora), and extensive experiments demonstrate its superiority over several cutting-edge benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alane发布了新的文献求助10
刚刚
chen应助我不是多肉采纳,获得10
刚刚
刚刚
小m发布了新的文献求助10
1秒前
叶帆完成签到,获得积分10
1秒前
大龙哥886应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
大龙哥886应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得30
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
2秒前
人九完成签到 ,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
大龙哥886应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
yznfly应助科研通管家采纳,获得150
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得30
2秒前
orixero应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
小徐发布了新的文献求助10
3秒前
3秒前
milikki完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300