TM-OKC: An Unsupervised Topic Model for Text in Online Knowledge Communities

计算机科学 主题模型 数据科学 情报检索 自然语言处理
作者
Dongcheng Zhang,Kunpeng Zhang,Yi Yang,David A. Schweidel
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:48 (3): 931-978
标识
DOI:10.25300/misq/2023/17885
摘要

Online knowledge communities (OKCs), such as question-and-answer sites, have become increasingly popular venues for knowledge sharing. Accordingly, it is necessary for researchers and practitioners to develop effective and efficient text analysis tools to understand the massive amount of user-generated content (UGC) on OKCs. Unsupervised topic modeling has been widely adopted to extract human-interpretable latent topics embedded in texts. These identified topics can be further used in subsequent analysis and managerial practices. However, existing generic topic models that assume documents are independent are inappropriate for analyzing OKCs where structural relationships exist between questions and answers. Thus, a new method is needed to fill this research gap. In this study, we propose a new topic model specifically designed for the text in OKCs. We make three primary contributions to the research on topic modeling in this context. First, we build a general and flexible Bayesian framework to explicitly model structural and temporal dependencies among texts. Second, we statistically demonstrate the approximate model inference using mean-field and coordinate ascent algorithms. Third, we showcase the practical value and relative merit of our method via a specific downstream task (i.e., user profiling). The proposed model is illustrated using two real-world datasets from well-known OKCs (i.e., Stack Exchange and Quora), and extensive experiments demonstrate its superiority over several cutting-edge benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
He完成签到,获得积分10
2秒前
俏皮的飞荷完成签到 ,获得积分10
3秒前
6秒前
Lyuhng+1完成签到 ,获得积分10
6秒前
pond发布了新的文献求助10
7秒前
7秒前
蔺天宇完成签到,获得积分10
8秒前
Corn_Dog发布了新的文献求助10
9秒前
9秒前
景辣条应助多多采纳,获得10
9秒前
科研啊科研完成签到,获得积分10
10秒前
火星上的摩托完成签到 ,获得积分10
10秒前
照照发布了新的文献求助10
10秒前
虚幻寄文完成签到 ,获得积分10
13秒前
丘比特应助五小采纳,获得10
14秒前
weirdo发布了新的文献求助10
14秒前
TQY完成签到,获得积分20
14秒前
幽默服饰完成签到,获得积分10
15秒前
15秒前
脑洞疼应助Varonica采纳,获得50
15秒前
小南孩完成签到,获得积分10
17秒前
朴素的荠完成签到,获得积分10
17秒前
照照完成签到,获得积分10
18秒前
19秒前
22秒前
能量球发布了新的文献求助10
22秒前
科研通AI2S应助Singularity采纳,获得10
23秒前
共享精神应助weiwei采纳,获得10
24秒前
明昼完成签到,获得积分10
24秒前
pond完成签到,获得积分10
25秒前
Jemezs发布了新的文献求助10
27秒前
聪明宛菡完成签到 ,获得积分10
27秒前
果砸完成签到 ,获得积分10
28秒前
32秒前
Lucas应助闪闪龙猫采纳,获得10
33秒前
善学以致用应助LIUYI采纳,获得10
34秒前
33W关闭了33W文献求助
36秒前
37秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139146
求助须知:如何正确求助?哪些是违规求助? 2790083
关于积分的说明 7793577
捐赠科研通 2446452
什么是DOI,文献DOI怎么找? 1301175
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102