Deep Learning Reconstructed New-Generation 0.55 T MRI of the Knee—A Prospective Comparison With Conventional 3 T MRI

磁共振成像 医学 膝关节痛 核医学 分级(工程) 放射科 病理 骨关节炎 工程类 土木工程 替代医学
作者
Ricardo Donners,Jan Vosshenrich,Magdalena Seng,M Fenchel,Dominik Nickel,Michael Bach,Florian Schmaranzer,Inga Todorski,Markus M. Obmann,Dorothee Harder,Hanns‐Christian Breit
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/rli.0000000000001093
摘要

Objectives The aim of this study was to compare deep learning reconstructed (DLR) 0.55 T magnetic resonance imaging (MRI) quality, identification, and grading of structural anomalies and reader confidence levels with conventional 3 T knee MRI in patients with knee pain following trauma. Materials and Methods This prospective study of 26 symptomatic patients (5 women) includes 52 paired DLR 0.55 T and conventional 3 T MRI examinations obtained in 1 setting. A novel, commercially available DLR algorithm was employed for 0.55 T image reconstruction. Four board-certified radiologists reviewed all images independently and graded image quality, noted structural anomalies and their respective reporting confidence levels for the presence or absence, as well as grading of bone, cartilage, meniscus, ligament, and tendon lesions. Image quality and reader confidence levels were compared ( P < 0.05, significant), and MRI findings were correlated between 0.55 T and 3 T MRI using Cohen kappa (κ). Results In reader's consensus, good image quality was found for DLR 0.55 T MRI and 3 T MRI (3.8 vs 4.1/5 points, P = 0.06). There was near-perfect agreement between 0.55 T DLR and 3 T MRI regarding the identification of structural anomalies for all readers (each κ ≥ 0.80). Substantial to near-perfection agreement between 0.55 T and 3 T MRI was reported for grading of cartilage (κ = 0.65–0.86) and meniscus lesions (κ = 0.71–1.0). High confidence levels were found for all readers for DLR 0.55 T and 3 T MRI, with 3 readers showing higher confidence levels for reporting cartilage lesions on 3 T MRI. Conclusions In conclusion, new-generation 0.55 T DLR MRI provides good image quality, comparable to conventional 3 T MRI, and allows for reliable identification of internal derangement of the knee with high reader confidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助ran123456采纳,获得30
刚刚
keyan_baby完成签到,获得积分20
1秒前
3秒前
坡坡大王完成签到,获得积分10
4秒前
钱宇成关注了科研通微信公众号
4秒前
5秒前
Zayro完成签到,获得积分10
6秒前
7秒前
自信雅琴发布了新的文献求助10
7秒前
anna发布了新的文献求助10
10秒前
CodeCraft应助Lu采纳,获得10
11秒前
11秒前
11秒前
Bressanone发布了新的文献求助10
12秒前
妙蛙完成签到,获得积分10
13秒前
14秒前
111111111发布了新的文献求助10
15秒前
妙蛙发布了新的文献求助10
17秒前
18秒前
爱笑紫菜发布了新的文献求助30
20秒前
20秒前
21秒前
李爱国应助111111111采纳,获得10
21秒前
tay发布了新的文献求助10
22秒前
科研通AI5应助ffff采纳,获得10
23秒前
过氧化氢发布了新的文献求助30
25秒前
感动黄豆发布了新的文献求助10
26秒前
钱宇成发布了新的文献求助10
26秒前
YJ888发布了新的文献求助10
26秒前
vincen91完成签到,获得积分10
30秒前
Leach完成签到 ,获得积分10
31秒前
长乐完成签到,获得积分10
32秒前
FashionBoy应助院士人启动采纳,获得10
36秒前
37秒前
37秒前
AptRank完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
38秒前
焦糖布丁的滋味完成签到,获得积分10
38秒前
39秒前
隐形的觅波完成签到 ,获得积分10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105