Deep Learning Reconstructed New-Generation 0.55 T MRI of the Knee—A Prospective Comparison With Conventional 3 T MRI

磁共振成像 医学 膝关节痛 核医学 分级(工程) 放射科 病理 骨关节炎 工程类 土木工程 替代医学
作者
Ricardo Donners,Jan Vosshenrich,Magdalena Seng,M Fenchel,Dominik Nickel,Michael Bach,Florian Schmaranzer,Inga Todorski,Markus M. Obmann,Dorothee Harder,Hanns‐Christian Breit
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
被引量:1
标识
DOI:10.1097/rli.0000000000001093
摘要

Objectives The aim of this study was to compare deep learning reconstructed (DLR) 0.55 T magnetic resonance imaging (MRI) quality, identification, and grading of structural anomalies and reader confidence levels with conventional 3 T knee MRI in patients with knee pain following trauma. Materials and Methods This prospective study of 26 symptomatic patients (5 women) includes 52 paired DLR 0.55 T and conventional 3 T MRI examinations obtained in 1 setting. A novel, commercially available DLR algorithm was employed for 0.55 T image reconstruction. Four board-certified radiologists reviewed all images independently and graded image quality, noted structural anomalies and their respective reporting confidence levels for the presence or absence, as well as grading of bone, cartilage, meniscus, ligament, and tendon lesions. Image quality and reader confidence levels were compared ( P < 0.05, significant), and MRI findings were correlated between 0.55 T and 3 T MRI using Cohen kappa (κ). Results In reader's consensus, good image quality was found for DLR 0.55 T MRI and 3 T MRI (3.8 vs 4.1/5 points, P = 0.06). There was near-perfect agreement between 0.55 T DLR and 3 T MRI regarding the identification of structural anomalies for all readers (each κ ≥ 0.80). Substantial to near-perfection agreement between 0.55 T and 3 T MRI was reported for grading of cartilage (κ = 0.65–0.86) and meniscus lesions (κ = 0.71–1.0). High confidence levels were found for all readers for DLR 0.55 T and 3 T MRI, with 3 readers showing higher confidence levels for reporting cartilage lesions on 3 T MRI. Conclusions In conclusion, new-generation 0.55 T DLR MRI provides good image quality, comparable to conventional 3 T MRI, and allows for reliable identification of internal derangement of the knee with high reader confidence.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
核桃应助yujiu采纳,获得30
1秒前
1秒前
科研通AI6应助悦耳青梦采纳,获得10
1秒前
炙热雅琴发布了新的文献求助10
2秒前
风笙发布了新的文献求助10
2秒前
所所应助liu66采纳,获得10
2秒前
JamesPei应助zyx采纳,获得10
4秒前
4秒前
三家分晋发布了新的文献求助10
5秒前
33发布了新的文献求助10
5秒前
小蘑菇应助zyyao采纳,获得10
6秒前
8899发布了新的文献求助10
6秒前
实验员完成签到,获得积分10
6秒前
Lucas应助炙热雅琴采纳,获得10
7秒前
rr完成签到,获得积分10
8秒前
小吴同学发布了新的文献求助10
8秒前
Liquid发布了新的文献求助10
9秒前
9秒前
10秒前
11秒前
酷炫迎波完成签到,获得积分10
12秒前
Lucas应助空勒采纳,获得30
12秒前
12秒前
13秒前
风笙完成签到,获得积分10
13秒前
13秒前
13秒前
宗剑发布了新的文献求助10
14秒前
14秒前
吴文婧完成签到,获得积分10
14秒前
CipherSage应助一一采纳,获得10
14秒前
三家分晋完成签到,获得积分20
15秒前
15秒前
DONG完成签到,获得积分10
16秒前
吃鱼完成签到 ,获得积分10
17秒前
走走发布了新的文献求助10
17秒前
张磊完成签到,获得积分10
18秒前
Orange应助无私的世界采纳,获得10
18秒前
科研通AI2S应助勤奋海燕采纳,获得10
18秒前
liu66发布了新的文献求助10
19秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501343
求助须知:如何正确求助?哪些是违规求助? 4597644
关于积分的说明 14460294
捐赠科研通 4531192
什么是DOI,文献DOI怎么找? 2483173
邀请新用户注册赠送积分活动 1466737
关于科研通互助平台的介绍 1439386