Deep Learning Reconstructed New-Generation 0.55 T MRI of the Knee—A Prospective Comparison With Conventional 3 T MRI

磁共振成像 医学 膝关节痛 核医学 分级(工程) 放射科 病理 骨关节炎 工程类 土木工程 替代医学
作者
Ricardo Donners,Jan Vosshenrich,Magdalena Seng,M Fenchel,Dominik Nickel,Michael Bach,Florian Schmaranzer,Inga Todorski,Markus M. Obmann,Dorothee Harder,Hanns‐Christian Breit
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/rli.0000000000001093
摘要

Objectives The aim of this study was to compare deep learning reconstructed (DLR) 0.55 T magnetic resonance imaging (MRI) quality, identification, and grading of structural anomalies and reader confidence levels with conventional 3 T knee MRI in patients with knee pain following trauma. Materials and Methods This prospective study of 26 symptomatic patients (5 women) includes 52 paired DLR 0.55 T and conventional 3 T MRI examinations obtained in 1 setting. A novel, commercially available DLR algorithm was employed for 0.55 T image reconstruction. Four board-certified radiologists reviewed all images independently and graded image quality, noted structural anomalies and their respective reporting confidence levels for the presence or absence, as well as grading of bone, cartilage, meniscus, ligament, and tendon lesions. Image quality and reader confidence levels were compared ( P < 0.05, significant), and MRI findings were correlated between 0.55 T and 3 T MRI using Cohen kappa (κ). Results In reader's consensus, good image quality was found for DLR 0.55 T MRI and 3 T MRI (3.8 vs 4.1/5 points, P = 0.06). There was near-perfect agreement between 0.55 T DLR and 3 T MRI regarding the identification of structural anomalies for all readers (each κ ≥ 0.80). Substantial to near-perfection agreement between 0.55 T and 3 T MRI was reported for grading of cartilage (κ = 0.65–0.86) and meniscus lesions (κ = 0.71–1.0). High confidence levels were found for all readers for DLR 0.55 T and 3 T MRI, with 3 readers showing higher confidence levels for reporting cartilage lesions on 3 T MRI. Conclusions In conclusion, new-generation 0.55 T DLR MRI provides good image quality, comparable to conventional 3 T MRI, and allows for reliable identification of internal derangement of the knee with high reader confidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LaTeXer应助单纯血茗采纳,获得50
3秒前
善良天抒完成签到 ,获得积分10
6秒前
鲸落发布了新的文献求助30
9秒前
葳葳完成签到,获得积分10
11秒前
sl发布了新的文献求助10
14秒前
14秒前
sanqian911完成签到,获得积分10
15秒前
昏睡的蟠桃应助liars采纳,获得150
16秒前
斯文败类应助荒野风采纳,获得10
16秒前
16秒前
hrzmlily完成签到,获得积分10
18秒前
顽主完成签到,获得积分10
19秒前
义气访曼完成签到 ,获得积分10
20秒前
时尚战斗机完成签到,获得积分10
20秒前
22秒前
亦玉完成签到,获得积分10
22秒前
Philadelphus完成签到,获得积分20
24秒前
24秒前
wsh完成签到 ,获得积分10
25秒前
luyue9406完成签到,获得积分10
25秒前
luochen完成签到,获得积分10
25秒前
酷波er应助奶黄包采纳,获得10
26秒前
ROMANTIC完成签到 ,获得积分10
26秒前
Hancock完成签到 ,获得积分10
27秒前
luyue9406发布了新的文献求助10
28秒前
Akim应助小王采纳,获得10
28秒前
甜蜜的楷瑞应助zqfxc采纳,获得10
30秒前
Hello应助花雨落123采纳,获得10
32秒前
33秒前
34秒前
柚仝完成签到 ,获得积分10
34秒前
贾明灵完成签到,获得积分10
34秒前
未来学术司马懿应助LIUYONG采纳,获得10
35秒前
Dops完成签到,获得积分10
37秒前
票子发布了新的文献求助10
38秒前
晚风完成签到 ,获得积分10
38秒前
坚强莺发布了新的文献求助10
38秒前
无奈曼云完成签到,获得积分10
39秒前
不会吹口哨完成签到,获得积分10
39秒前
易槐完成签到,获得积分10
40秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029