Deep Learning Reconstructed New-Generation 0.55 T MRI of the Knee—A Prospective Comparison With Conventional 3 T MRI

磁共振成像 医学 膝关节痛 核医学 分级(工程) 放射科 病理 骨关节炎 工程类 土木工程 替代医学
作者
Ricardo Donners,Jan Vosshenrich,Magdalena Seng,M Fenchel,Dominik Nickel,Michael Bach,Florian Schmaranzer,Inga Todorski,Markus M. Obmann,Dorothee Harder,Hanns‐Christian Breit
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
被引量:1
标识
DOI:10.1097/rli.0000000000001093
摘要

Objectives The aim of this study was to compare deep learning reconstructed (DLR) 0.55 T magnetic resonance imaging (MRI) quality, identification, and grading of structural anomalies and reader confidence levels with conventional 3 T knee MRI in patients with knee pain following trauma. Materials and Methods This prospective study of 26 symptomatic patients (5 women) includes 52 paired DLR 0.55 T and conventional 3 T MRI examinations obtained in 1 setting. A novel, commercially available DLR algorithm was employed for 0.55 T image reconstruction. Four board-certified radiologists reviewed all images independently and graded image quality, noted structural anomalies and their respective reporting confidence levels for the presence or absence, as well as grading of bone, cartilage, meniscus, ligament, and tendon lesions. Image quality and reader confidence levels were compared ( P < 0.05, significant), and MRI findings were correlated between 0.55 T and 3 T MRI using Cohen kappa (κ). Results In reader's consensus, good image quality was found for DLR 0.55 T MRI and 3 T MRI (3.8 vs 4.1/5 points, P = 0.06). There was near-perfect agreement between 0.55 T DLR and 3 T MRI regarding the identification of structural anomalies for all readers (each κ ≥ 0.80). Substantial to near-perfection agreement between 0.55 T and 3 T MRI was reported for grading of cartilage (κ = 0.65–0.86) and meniscus lesions (κ = 0.71–1.0). High confidence levels were found for all readers for DLR 0.55 T and 3 T MRI, with 3 readers showing higher confidence levels for reporting cartilage lesions on 3 T MRI. Conclusions In conclusion, new-generation 0.55 T DLR MRI provides good image quality, comparable to conventional 3 T MRI, and allows for reliable identification of internal derangement of the knee with high reader confidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助Ai77采纳,获得10
刚刚
情怀应助李牧采纳,获得10
1秒前
蓝hj561213完成签到,获得积分10
1秒前
ccqqww完成签到,获得积分20
1秒前
CodeCraft应助幸福哈密瓜采纳,获得10
1秒前
晚晚发布了新的文献求助10
2秒前
2秒前
2秒前
CipherSage应助时尚朋友采纳,获得10
3秒前
3秒前
4秒前
4秒前
HHHhjl完成签到,获得积分10
4秒前
Chaos完成签到,获得积分10
5秒前
CodeCraft应助dt采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
加勒比海带完成签到,获得积分10
6秒前
6秒前
qianduoduo完成签到 ,获得积分10
6秒前
putong发布了新的文献求助10
7秒前
杨宝发布了新的文献求助10
8秒前
科研通AI6应助背后的雨竹采纳,获得10
8秒前
qqwdss发布了新的文献求助10
9秒前
9秒前
李健应助科研小白采纳,获得10
10秒前
科研通AI6应助李开心采纳,获得10
11秒前
qianduoduo关注了科研通微信公众号
12秒前
理理发布了新的文献求助10
12秒前
12秒前
英俊的铭应助Yzz采纳,获得10
12秒前
13秒前
wanci应助WYS采纳,获得10
13秒前
SciGPT应助阿巴阿巴采纳,获得10
13秒前
13秒前
侧耳倾听发布了新的文献求助10
13秒前
14秒前
Kathy发布了新的文献求助10
15秒前
科目三应助Salut采纳,获得10
16秒前
李爱国应助chengzi202采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917