Deep Learning Reconstructed New-Generation 0.55 T MRI of the Knee—A Prospective Comparison With Conventional 3 T MRI

磁共振成像 医学 膝关节痛 核医学 分级(工程) 放射科 病理 骨关节炎 工程类 土木工程 替代医学
作者
Ricardo Donners,Jan Vosshenrich,Magdalena Seng,M Fenchel,Dominik Nickel,Michael Bach,Florian Schmaranzer,Inga Todorski,Markus M. Obmann,Dorothee Harder,Hanns‐Christian Breit
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/rli.0000000000001093
摘要

Objectives The aim of this study was to compare deep learning reconstructed (DLR) 0.55 T magnetic resonance imaging (MRI) quality, identification, and grading of structural anomalies and reader confidence levels with conventional 3 T knee MRI in patients with knee pain following trauma. Materials and Methods This prospective study of 26 symptomatic patients (5 women) includes 52 paired DLR 0.55 T and conventional 3 T MRI examinations obtained in 1 setting. A novel, commercially available DLR algorithm was employed for 0.55 T image reconstruction. Four board-certified radiologists reviewed all images independently and graded image quality, noted structural anomalies and their respective reporting confidence levels for the presence or absence, as well as grading of bone, cartilage, meniscus, ligament, and tendon lesions. Image quality and reader confidence levels were compared ( P < 0.05, significant), and MRI findings were correlated between 0.55 T and 3 T MRI using Cohen kappa (κ). Results In reader's consensus, good image quality was found for DLR 0.55 T MRI and 3 T MRI (3.8 vs 4.1/5 points, P = 0.06). There was near-perfect agreement between 0.55 T DLR and 3 T MRI regarding the identification of structural anomalies for all readers (each κ ≥ 0.80). Substantial to near-perfection agreement between 0.55 T and 3 T MRI was reported for grading of cartilage (κ = 0.65–0.86) and meniscus lesions (κ = 0.71–1.0). High confidence levels were found for all readers for DLR 0.55 T and 3 T MRI, with 3 readers showing higher confidence levels for reporting cartilage lesions on 3 T MRI. Conclusions In conclusion, new-generation 0.55 T DLR MRI provides good image quality, comparable to conventional 3 T MRI, and allows for reliable identification of internal derangement of the knee with high reader confidence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻花卷完成签到,获得积分10
刚刚
马上有钱完成签到,获得积分10
刚刚
神勇的长颈鹿完成签到 ,获得积分10
刚刚
果冻泥发布了新的文献求助10
1秒前
毛豆爸爸发布了新的文献求助10
1秒前
科研通AI2S应助农大彭于晏采纳,获得10
2秒前
在远方发布了新的文献求助10
3秒前
3秒前
上官若男应助乐乐采纳,获得10
4秒前
sekidesu发布了新的文献求助10
4秒前
5秒前
CipherSage应助锦七采纳,获得10
5秒前
5秒前
7秒前
7秒前
LYJ发布了新的文献求助10
7秒前
小池完成签到 ,获得积分10
8秒前
qyq发布了新的文献求助10
8秒前
9秒前
林安发布了新的文献求助10
9秒前
9秒前
11秒前
看不懂发布了新的文献求助10
11秒前
11秒前
dzy1317完成签到,获得积分10
12秒前
13秒前
能干大树发布了新的文献求助10
13秒前
Liu发布了新的文献求助10
14秒前
Somnus完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
小一不二发布了新的文献求助10
18秒前
19秒前
20秒前
zzz完成签到,获得积分10
20秒前
文艺点点完成签到,获得积分10
21秒前
可爱的函函应助guan采纳,获得10
21秒前
星辰大海应助小一不二采纳,获得10
23秒前
23秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129723
求助须知:如何正确求助?哪些是违规求助? 2780500
关于积分的说明 7748555
捐赠科研通 2435832
什么是DOI,文献DOI怎么找? 1294313
科研通“疑难数据库(出版商)”最低求助积分说明 623670
版权声明 600570