COSMO: A Large-Scale E-commerce Common Sense Knowledge Generation and Serving System at Amazon

亚马逊雨林 比例(比率) 计算机科学 电子商务 数据科学 万维网 地理 地图学 生态学 生物
作者
Changlong Yu,Xin Liu,Jefferson de Carvalho Maia,Yang Li,Tianyu Cao,Yifan Gao,Yangqiu Song,Rahul Goutam,Haiyang Zhang,Bing Yin,zheng li
标识
DOI:10.1145/3626246.3653398
摘要

Applications of large-scale knowledge graphs in the e-commerce platforms can improve shopping experience for their customers. While existing e-commerce knowledge graphs (KGs) integrate a large volume of concepts or product attributes, they fail to discover user intentions, leaving the gap with how people think, behave, and interact with the surrounding world. In this work, we present COSMO, a scalable system to mine user-centric commonsense knowledge from massive behaviors and construct industry-scale knowledge graphs to empower diverse online services. In particular, we describe a pipeline for collecting high-quality seed knowledge assertions that are distilled from large language models (LLMs) and further refined by critic classifiers trained over human-in-the-loop annotated data.Since those generations may not always align with human preferences and contain noises, we then describe how we adopt instruction tuning to finetune an efficient language model~(COSMO-LM) for faithful e-commerce commonsense knowledge generation at scale. COSMO-LM effectively expands our knowledge graph to 18 major categories at Amazon, producing millions of high-quality knowledge with only 30k annotated instructions. Finally COSMO has been deployed in Amazon search applications such as search navigation. Both offline and online A/B experiments demonstrate our proposed system achieves significant improvement. Furthermore, these experiments highlight the immense potential of commonsense knowledge extracted from instruction-finetuned large language models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
希望天下0贩的0应助nbzhan采纳,获得10
2秒前
咕噜咕噜发布了新的文献求助10
3秒前
3秒前
4秒前
大旗完成签到,获得积分10
4秒前
1LDan完成签到,获得积分10
5秒前
5秒前
杨光发布了新的文献求助50
5秒前
辰月贰拾发布了新的文献求助30
6秒前
充电宝应助程风破浪采纳,获得10
6秒前
6秒前
7秒前
平常紫易完成签到,获得积分10
7秒前
zyf发布了新的文献求助10
7秒前
ericzhouxx应助LAN0528采纳,获得20
7秒前
小虾米完成签到,获得积分10
8秒前
开放的斌发布了新的文献求助30
9秒前
10秒前
毛豆应助xip采纳,获得10
11秒前
11秒前
大旗发布了新的文献求助10
11秒前
QXS驳回了CC应助
11秒前
12秒前
彭于晏应助平常紫易采纳,获得10
12秒前
hhh发布了新的文献求助10
13秒前
jufefit发布了新的文献求助10
14秒前
15秒前
赘婿应助重要的波吉采纳,获得10
15秒前
隐形曼青应助杨光采纳,获得10
15秒前
16秒前
16秒前
17秒前
shirelylee发布了新的文献求助20
17秒前
17秒前
Katiros完成签到,获得积分10
17秒前
踏实咖啡豆完成签到,获得积分10
18秒前
18秒前
土土土发布了新的文献求助10
20秒前
黎明发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565922
求助须知:如何正确求助?哪些是违规求助? 3138683
关于积分的说明 9428454
捐赠科研通 2839408
什么是DOI,文献DOI怎么找? 1560695
邀请新用户注册赠送积分活动 729854
科研通“疑难数据库(出版商)”最低求助积分说明 717669