A machine learning-based prediction model for gout in hyperuricemics: a nationwide cohort study

医学 痛风 接收机工作特性 高尿酸血症 非布索坦 内科学 队列 回顾性队列研究 药方 队列研究 医学诊断 物理疗法 尿酸 病理 药理学
作者
Shay Brikman,Liel Serfaty,Ran Abuhasira,Naomi Schlesinger,Amir Bieber,Nadav Rappoport
出处
期刊:Rheumatology [Oxford University Press]
卷期号:63 (9): 2411-2417 被引量:1
标识
DOI:10.1093/rheumatology/keae273
摘要

Abstract Objective To develop a machine learning-based prediction model for identifying hyperuricemic participants at risk of developing gout. Methods A retrospective nationwide Israeli cohort study used the Clalit Health Insurance database of 473 124 individuals to identify adults 18 years or older with at least two serum urate measurements exceeding 6.8 mg/dl between January 2007 and December 2022. Patients with a prior gout diagnosis or on gout medications were excluded. Patients’ demographic characteristics, community and hospital diagnoses, routine medication prescriptions and laboratory results were used to train a risk prediction model. A machine learning model, XGBoost, was developed to predict the risk of gout. Feature selection methods were used to identify relevant variables. The model's performance was evaluated using the receiver operating characteristic area under the curve (ROC AUC) and precision-recall AUC. The primary outcome was the diagnosis of gout among hyperuricemic patients. Results Among the 301 385 participants with hyperuricemia included in the analysis, 15 055 (5%) were diagnosed with gout. The XGBoost model had a ROC-AUC of 0.781 (95% CI 0.78–0.784) and precision-recall AUC of 0.208 (95% CI 0.195–0.22). The most significant variables associated with gout diagnosis were serum uric acid levels, age, hyperlipidemia, non-steroidal anti-inflammatory drugs and diuretic purchases. A compact model using only these five variables yielded a ROC-AUC of 0.714 (95% CI 0.706–0.723) and a negative predictive value (NPV) of 95%. Conclusions The findings of this cohort study suggest that a machine learning-based prediction model had relatively good performance and high NPV for identifying hyperuricemic participants at risk of developing gout.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
活力宝马发布了新的文献求助10
1秒前
2秒前
彻底发布了新的文献求助10
3秒前
3秒前
Ava应助火星上听寒采纳,获得10
4秒前
5秒前
6秒前
6秒前
nana2hao完成签到,获得积分10
7秒前
ummmmm完成签到,获得积分10
7秒前
7秒前
香蕉觅云应助jekin采纳,获得10
8秒前
大方豌豆发布了新的文献求助20
8秒前
9秒前
orixero应助TvT采纳,获得10
9秒前
KK完成签到,获得积分10
9秒前
WSY发布了新的文献求助10
10秒前
生动的煎蛋完成签到 ,获得积分10
10秒前
热心枕头发布了新的文献求助10
14秒前
一鸣发布了新的文献求助10
15秒前
15秒前
wang完成签到,获得积分10
16秒前
gyf发布了新的文献求助10
16秒前
16秒前
Ywswj完成签到,获得积分10
18秒前
nenoaowu发布了新的文献求助30
18秒前
搜集达人应助学习的小崽采纳,获得30
18秒前
啦啦啦发布了新的文献求助10
18秒前
18秒前
Mya发布了新的文献求助10
18秒前
深情安青应助honghu采纳,获得10
19秒前
rFsu66Aiir完成签到,获得积分0
19秒前
英姑应助YAN采纳,获得10
20秒前
20秒前
21秒前
dellajj发布了新的文献求助10
22秒前
无情盼雁完成签到,获得积分10
22秒前
哈哈完成签到,获得积分20
23秒前
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749193
求助须知:如何正确求助?哪些是违规求助? 3292446
关于积分的说明 10076739
捐赠科研通 3007912
什么是DOI,文献DOI怎么找? 1651897
邀请新用户注册赠送积分活动 786893
科研通“疑难数据库(出版商)”最低求助积分说明 751861