Object detection on low-resolution images with two-stage enhancement

阶段(地层学) 计算机视觉 人工智能 分辨率(逻辑) 计算机科学 目标检测 模式识别(心理学) 地质学 古生物学
作者
Minghong Li,Yuqian Zhao,Gui Gui,Fan Zhang,Biao Luo,Chunhua Yang,Weihua Gui,Kan Chang,Hui Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 111985-111985 被引量:5
标识
DOI:10.1016/j.knosys.2024.111985
摘要

Although deep learning-based object detection methods have achieved superior performance on conventional benchmark datasets, it is still difficult to detect objects from low-resolution (LR) images under diverse degradation conditions. To this end, a two-stage enhancement method for the LR image object detection (TELOD) framework is proposed. In the first stage, an extremely lightweight task disentanglement enhancement network (TDEN) is developed as a super-resolution (SR) sub-network before the detector. In the TDEN, the SR images can be obtained by applying the recurrent connection manner between an image restoration branch (IRB) and a resolution enhancement branch (REB) to enhance the input LR images. Specifically, the TDEN reduces the difficulty of image reconstruction by dividing the total image enhancement task into two sub-tasks, which are accomplished by the IRB and REB, respectively. Furthermore, a shared feature extractor is applied across two sub-tasks to explore common and accurate feature representations. In the second stage, an auxiliary feature enhancement head (AFEH) driven by high-resolution (HR) image priors is designed to improve the task-specific features produced by the detection Neck without any extra inference costs. In particular, the feature interaction module is built into the AFEH to integrate the features from the enhancement and detection phases to learn comprehensive information for detection. Extensive experiments show that the proposed TELOD significantly outperforms other methods. Specifically, the TELOD achieves mAP improvements of 1.8% and 3.3% over the second best method AERIS on degraded VOC and COCO datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助邵梁健采纳,获得10
1秒前
3秒前
FleurdelisDZhang完成签到,获得积分10
3秒前
kevin发布了新的文献求助10
3秒前
bkagyin应助Jennie369采纳,获得10
4秒前
scuter发布了新的文献求助10
4秒前
4秒前
刻苦的芝麻完成签到,获得积分10
4秒前
6秒前
6秒前
9秒前
酷波er应助zinnn采纳,获得10
9秒前
macarthur完成签到,获得积分10
10秒前
10秒前
shang发布了新的文献求助10
11秒前
12秒前
77发布了新的文献求助10
12秒前
14秒前
scuter完成签到,获得积分10
15秒前
15秒前
小麦发布了新的文献求助10
15秒前
木鸽子完成签到,获得积分10
16秒前
终梦应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
ccm应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
ccm应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得20
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得30
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818