Object detection on low-resolution images with two-stage enhancement

阶段(地层学) 计算机视觉 人工智能 分辨率(逻辑) 计算机科学 目标检测 模式识别(心理学) 地质学 古生物学
作者
Minghong Li,Yuqian Zhao,Gui Gui,Fan Zhang,Biao Luo,Chunhua Yang,Weihua Gui,Kan Chang,Zhiwei Xie
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:299: 111985-111985 被引量:1
标识
DOI:10.1016/j.knosys.2024.111985
摘要

Although deep learning-based object detection methods have achieved superior performance on conventional benchmark datasets, it is still difficult to detect objects from low-resolution (LR) images under diverse degradation conditions. To this end, a two-stage enhancement method for the LR image object detection (TELOD) framework is proposed. In the first stage, an extremely lightweight task disentanglement enhancement network (TDEN) is developed as a super-resolution (SR) sub-network before the detector. In the TDEN, the SR images can be obtained by applying the recurrent connection manner between an image restoration branch (IRB) and a resolution enhancement branch (REB) to enhance the input LR images. Specifically, the TDEN reduces the difficulty of image reconstruction by dividing the total image enhancement task into two sub-tasks, which are accomplished by the IRB and REB, respectively. Furthermore, a shared feature extractor is applied across two sub-tasks to explore common and accurate feature representations. In the second stage, an auxiliary feature enhancement head (AFEH) driven by high-resolution (HR) image priors is designed to improve the task-specific features produced by the detection Neck without any extra inference costs. In particular, the feature interaction module is built into the AFEH to integrate the features from the enhancement and detection phases to learn comprehensive information for detection. Extensive experiments show that the proposed TELOD significantly outperforms other methods. Specifically, the TELOD achieves mAP improvements of 1.8% and 3.3% over the second best method AERIS on degraded VOC and COCO datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助zf采纳,获得10
刚刚
斯文败类应助顺利秋灵采纳,获得10
1秒前
负责丹亦完成签到,获得积分10
2秒前
自由凌雪完成签到 ,获得积分10
3秒前
羊羊发布了新的文献求助30
3秒前
小蘑菇应助熊遇蜜采纳,获得10
4秒前
CQ发布了新的文献求助10
4秒前
123发布了新的文献求助10
4秒前
Juvenilesy发布了新的文献求助50
4秒前
4秒前
hgh发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
Xu完成签到,获得积分10
8秒前
在水一方应助G1234采纳,获得10
8秒前
小可发布了新的文献求助10
9秒前
宁远完成签到 ,获得积分10
10秒前
苑阿宇发布了新的文献求助10
10秒前
cc陈发布了新的文献求助10
11秒前
vuu完成签到 ,获得积分10
11秒前
别止完成签到,获得积分10
12秒前
12秒前
领导范儿应助美味肉蟹煲采纳,获得10
13秒前
科研狗发布了新的文献求助10
13秒前
EasyNan应助TARCY采纳,获得10
14秒前
wwww完成签到,获得积分20
14秒前
15秒前
清脆的飞丹完成签到,获得积分10
15秒前
科研通AI5应助CQ采纳,获得10
15秒前
稳重的安萱完成签到,获得积分10
15秒前
慕青应助zhanghaoxiang采纳,获得30
17秒前
17秒前
17秒前
18秒前
gigi发布了新的文献求助10
19秒前
熊遇蜜发布了新的文献求助10
20秒前
情怀应助Juvenilesy采纳,获得50
20秒前
可爱的函函应助羊羊采纳,获得10
21秒前
坐等时光看轻自己完成签到,获得积分10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736001
求助须知:如何正确求助?哪些是违规求助? 3279686
关于积分的说明 10017009
捐赠科研通 2996428
什么是DOI,文献DOI怎么找? 1644048
邀请新用户注册赠送积分活动 781753
科研通“疑难数据库(出版商)”最低求助积分说明 749425