Object detection on low-resolution images with two-stage enhancement

阶段(地层学) 计算机视觉 人工智能 分辨率(逻辑) 计算机科学 目标检测 模式识别(心理学) 地质学 古生物学
作者
Minghong Li,Yuqian Zhao,Gui Gui,Fan Zhang,Biao Luo,Chunhua Yang,Weihua Gui,Kan Chang,Zhiwei Xie
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 111985-111985 被引量:1
标识
DOI:10.1016/j.knosys.2024.111985
摘要

Although deep learning-based object detection methods have achieved superior performance on conventional benchmark datasets, it is still difficult to detect objects from low-resolution (LR) images under diverse degradation conditions. To this end, a two-stage enhancement method for the LR image object detection (TELOD) framework is proposed. In the first stage, an extremely lightweight task disentanglement enhancement network (TDEN) is developed as a super-resolution (SR) sub-network before the detector. In the TDEN, the SR images can be obtained by applying the recurrent connection manner between an image restoration branch (IRB) and a resolution enhancement branch (REB) to enhance the input LR images. Specifically, the TDEN reduces the difficulty of image reconstruction by dividing the total image enhancement task into two sub-tasks, which are accomplished by the IRB and REB, respectively. Furthermore, a shared feature extractor is applied across two sub-tasks to explore common and accurate feature representations. In the second stage, an auxiliary feature enhancement head (AFEH) driven by high-resolution (HR) image priors is designed to improve the task-specific features produced by the detection Neck without any extra inference costs. In particular, the feature interaction module is built into the AFEH to integrate the features from the enhancement and detection phases to learn comprehensive information for detection. Extensive experiments show that the proposed TELOD significantly outperforms other methods. Specifically, the TELOD achieves mAP improvements of 1.8% and 3.3% over the second best method AERIS on degraded VOC and COCO datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Edison完成签到,获得积分10
刚刚
清新发布了新的文献求助10
1秒前
跳跃的香完成签到,获得积分10
2秒前
JamesPei应助xiaoyu采纳,获得10
3秒前
4秒前
完美世界应助okei采纳,获得10
4秒前
Shayulajiao发布了新的文献求助30
4秒前
Akim应助Edison采纳,获得10
5秒前
6秒前
wzZ完成签到,获得积分10
6秒前
7秒前
8秒前
10秒前
米糊发布了新的文献求助10
10秒前
毛豆应助mermer采纳,获得10
11秒前
Jonathan发布了新的文献求助10
11秒前
nonTUT发布了新的文献求助10
11秒前
yy完成签到,获得积分20
12秒前
12秒前
14秒前
今时今日发布了新的文献求助30
16秒前
yy发布了新的文献求助30
16秒前
CipherSage应助nonTUT采纳,获得10
18秒前
调研昵称发布了新的文献求助10
18秒前
wanghuan发布了新的文献求助10
19秒前
FashionBoy应助brownnose采纳,获得10
21秒前
虹归于叶完成签到 ,获得积分10
21秒前
纯真的雨完成签到 ,获得积分10
23秒前
小海完成签到,获得积分10
23秒前
清爽水彤完成签到 ,获得积分10
24秒前
赘婿应助健忘的白秋采纳,获得10
25秒前
潘小辰完成签到,获得积分10
26秒前
26秒前
cjh发布了新的文献求助10
29秒前
淡水痕发布了新的文献求助10
32秒前
33秒前
王则前完成签到,获得积分20
34秒前
wanci应助memo采纳,获得10
34秒前
大模型应助HIBARRA采纳,获得10
35秒前
传奇3应助大力沛萍采纳,获得10
35秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458942
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037299
捐赠科研通 2742793
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694553