Object detection on low-resolution images with two-stage enhancement

阶段(地层学) 计算机视觉 人工智能 分辨率(逻辑) 计算机科学 目标检测 模式识别(心理学) 地质学 古生物学
作者
Minghong Li,Yuqian Zhao,Gui Gui,Fan Zhang,Biao Luo,Chunhua Yang,Weihua Gui,Kan Chang,Hui Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:299: 111985-111985 被引量:5
标识
DOI:10.1016/j.knosys.2024.111985
摘要

Although deep learning-based object detection methods have achieved superior performance on conventional benchmark datasets, it is still difficult to detect objects from low-resolution (LR) images under diverse degradation conditions. To this end, a two-stage enhancement method for the LR image object detection (TELOD) framework is proposed. In the first stage, an extremely lightweight task disentanglement enhancement network (TDEN) is developed as a super-resolution (SR) sub-network before the detector. In the TDEN, the SR images can be obtained by applying the recurrent connection manner between an image restoration branch (IRB) and a resolution enhancement branch (REB) to enhance the input LR images. Specifically, the TDEN reduces the difficulty of image reconstruction by dividing the total image enhancement task into two sub-tasks, which are accomplished by the IRB and REB, respectively. Furthermore, a shared feature extractor is applied across two sub-tasks to explore common and accurate feature representations. In the second stage, an auxiliary feature enhancement head (AFEH) driven by high-resolution (HR) image priors is designed to improve the task-specific features produced by the detection Neck without any extra inference costs. In particular, the feature interaction module is built into the AFEH to integrate the features from the enhancement and detection phases to learn comprehensive information for detection. Extensive experiments show that the proposed TELOD significantly outperforms other methods. Specifically, the TELOD achieves mAP improvements of 1.8% and 3.3% over the second best method AERIS on degraded VOC and COCO datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助牛牛眉目采纳,获得10
刚刚
科目三应助FANTASY采纳,获得10
1秒前
1秒前
Georges-09发布了新的文献求助10
1秒前
nini完成签到,获得积分10
4秒前
张萌发布了新的文献求助10
5秒前
8秒前
8秒前
8秒前
10秒前
明天见发布了新的文献求助10
12秒前
Hello应助计时器响了采纳,获得10
13秒前
潇洒飞丹发布了新的文献求助10
13秒前
plant发布了新的文献求助10
14秒前
Ly发布了新的文献求助10
15秒前
Owen应助烦躁先生采纳,获得10
16秒前
16秒前
16秒前
勤奋的寒风完成签到,获得积分10
18秒前
柯一一应助牛牛眉目采纳,获得10
18秒前
火星上的宫苴完成签到 ,获得积分10
21秒前
淡淡夕阳发布了新的文献求助10
21秒前
Jasper应助海边的卡夫卡采纳,获得10
22秒前
yx_cheng发布了新的文献求助10
23秒前
24秒前
隐形曼青应助Yukaze采纳,获得10
24秒前
25秒前
炫潮浪子完成签到,获得积分10
25秒前
SYLH应助Georges-09采纳,获得10
26秒前
26秒前
27秒前
28秒前
Shawn完成签到,获得积分10
28秒前
29秒前
29秒前
Zoe完成签到,获得积分10
29秒前
pxy发布了新的文献求助10
32秒前
潇洒飞丹发布了新的文献求助10
33秒前
33秒前
Ava应助科研通管家采纳,获得10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956275
求助须知:如何正确求助?哪些是违规求助? 3502464
关于积分的说明 11107805
捐赠科研通 3233133
什么是DOI,文献DOI怎么找? 1787170
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802093