Object detection on low-resolution images with two-stage enhancement

阶段(地层学) 计算机视觉 人工智能 分辨率(逻辑) 计算机科学 目标检测 模式识别(心理学) 地质学 古生物学
作者
Minghong Li,Yuqian Zhao,Gui Gui,Fan Zhang,Biao Luo,Chunhua Yang,Weihua Gui,Kan Chang,Hui Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:299: 111985-111985 被引量:5
标识
DOI:10.1016/j.knosys.2024.111985
摘要

Although deep learning-based object detection methods have achieved superior performance on conventional benchmark datasets, it is still difficult to detect objects from low-resolution (LR) images under diverse degradation conditions. To this end, a two-stage enhancement method for the LR image object detection (TELOD) framework is proposed. In the first stage, an extremely lightweight task disentanglement enhancement network (TDEN) is developed as a super-resolution (SR) sub-network before the detector. In the TDEN, the SR images can be obtained by applying the recurrent connection manner between an image restoration branch (IRB) and a resolution enhancement branch (REB) to enhance the input LR images. Specifically, the TDEN reduces the difficulty of image reconstruction by dividing the total image enhancement task into two sub-tasks, which are accomplished by the IRB and REB, respectively. Furthermore, a shared feature extractor is applied across two sub-tasks to explore common and accurate feature representations. In the second stage, an auxiliary feature enhancement head (AFEH) driven by high-resolution (HR) image priors is designed to improve the task-specific features produced by the detection Neck without any extra inference costs. In particular, the feature interaction module is built into the AFEH to integrate the features from the enhancement and detection phases to learn comprehensive information for detection. Extensive experiments show that the proposed TELOD significantly outperforms other methods. Specifically, the TELOD achieves mAP improvements of 1.8% and 3.3% over the second best method AERIS on degraded VOC and COCO datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏卿应助Tonald Yang采纳,获得10
刚刚
胜胜糖完成签到 ,获得积分10
3秒前
庞伟泽完成签到,获得积分10
4秒前
LingYun完成签到,获得积分10
4秒前
lemon完成签到,获得积分10
4秒前
cherhon完成签到,获得积分10
5秒前
小二郎应助流星雨采纳,获得10
9秒前
jszz应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
小离应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
简单完成签到 ,获得积分10
10秒前
11秒前
鑫渊发布了新的文献求助10
14秒前
15秒前
MaheshTiangong完成签到,获得积分10
15秒前
小希完成签到 ,获得积分10
16秒前
怕孤独的访云完成签到 ,获得积分10
16秒前
17秒前
19秒前
不倦应助why采纳,获得30
20秒前
流星雨发布了新的文献求助10
23秒前
Eason_C完成签到 ,获得积分10
24秒前
鑫渊完成签到,获得积分10
24秒前
mix完成签到,获得积分10
30秒前
阔达如柏完成签到,获得积分10
30秒前
wll1091完成签到 ,获得积分10
31秒前
31秒前
负责的寒梅完成签到 ,获得积分10
33秒前
Linly发布了新的文献求助10
34秒前
shinian完成签到 ,获得积分10
35秒前
36秒前
37秒前
star发布了新的文献求助10
37秒前
boymin2015完成签到 ,获得积分10
38秒前
42秒前
满意白卉完成签到 ,获得积分10
42秒前
Yynnn完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5304275
求助须知:如何正确求助?哪些是违规求助? 4450880
关于积分的说明 13849976
捐赠科研通 4337819
什么是DOI,文献DOI怎么找? 2381673
邀请新用户注册赠送积分活动 1376668
关于科研通互助平台的介绍 1343751