Object detection on low-resolution images with two-stage enhancement

阶段(地层学) 计算机视觉 人工智能 分辨率(逻辑) 计算机科学 目标检测 模式识别(心理学) 地质学 古生物学
作者
Minghong Li,Yuqian Zhao,Gui Gui,Fan Zhang,Biao Luo,Chunhua Yang,Weihua Gui,Kan Chang,Hui Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:299: 111985-111985 被引量:5
标识
DOI:10.1016/j.knosys.2024.111985
摘要

Although deep learning-based object detection methods have achieved superior performance on conventional benchmark datasets, it is still difficult to detect objects from low-resolution (LR) images under diverse degradation conditions. To this end, a two-stage enhancement method for the LR image object detection (TELOD) framework is proposed. In the first stage, an extremely lightweight task disentanglement enhancement network (TDEN) is developed as a super-resolution (SR) sub-network before the detector. In the TDEN, the SR images can be obtained by applying the recurrent connection manner between an image restoration branch (IRB) and a resolution enhancement branch (REB) to enhance the input LR images. Specifically, the TDEN reduces the difficulty of image reconstruction by dividing the total image enhancement task into two sub-tasks, which are accomplished by the IRB and REB, respectively. Furthermore, a shared feature extractor is applied across two sub-tasks to explore common and accurate feature representations. In the second stage, an auxiliary feature enhancement head (AFEH) driven by high-resolution (HR) image priors is designed to improve the task-specific features produced by the detection Neck without any extra inference costs. In particular, the feature interaction module is built into the AFEH to integrate the features from the enhancement and detection phases to learn comprehensive information for detection. Extensive experiments show that the proposed TELOD significantly outperforms other methods. Specifically, the TELOD achieves mAP improvements of 1.8% and 3.3% over the second best method AERIS on degraded VOC and COCO datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UHPC发布了新的文献求助10
刚刚
刚刚
华仔应助寻光人采纳,获得10
1秒前
赘婿应助罗彩明采纳,获得10
1秒前
1秒前
1秒前
xiaofengyyy发布了新的文献求助10
2秒前
我是老大应助sunyuhao采纳,获得30
3秒前
4秒前
顾矜应助sunwei采纳,获得10
5秒前
SciGPT应助现实的安波采纳,获得10
6秒前
李123发布了新的文献求助10
6秒前
李健的小迷弟应助汎影采纳,获得10
7秒前
8秒前
orixero应助Applause采纳,获得10
8秒前
9秒前
小蘑菇应助太阳采纳,获得10
9秒前
9秒前
哑巴完成签到,获得积分10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
10秒前
三无发布了新的文献求助10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得30
10秒前
Leanne应助科研通管家采纳,获得30
10秒前
无花果应助科研通管家采纳,获得10
10秒前
mmmmb应助科研通管家采纳,获得30
10秒前
10秒前
李燕君应助科研通管家采纳,获得30
10秒前
11秒前
dearcih完成签到,获得积分10
11秒前
完美世界应助科研通管家采纳,获得30
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
风清扬发布了新的文献求助10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132036
求助须知:如何正确求助?哪些是违规求助? 4333560
关于积分的说明 13501173
捐赠科研通 4170621
什么是DOI,文献DOI怎么找? 2286445
邀请新用户注册赠送积分活动 1287303
关于科研通互助平台的介绍 1228340