A First-Principles and Machine Learning Study on Design of Graphitic Carbon Nitride-Based Single-Atom Photocatalysts

石墨氮化碳 Atom(片上系统) 氮化物 密度泛函理论 材料科学 氮化碳 碳纤维 电子结构 光催化 纳米技术 计算机科学 化学 计算化学 复合材料 图层(电子) 催化作用 复合数 嵌入式系统 有机化学
作者
F.-Q. Chen,Yongan Yang,Xing Chen
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (10): 11862-11870 被引量:1
标识
DOI:10.1021/acsanm.4c01412
摘要

Photocatalytic nitrogen fixation offers an efficient, environmentally friendly, and energy-saving approach for ammonia synthesis. In this study, semiconductor materials, particularly graphitic carbon nitride (g-C3N4) combined with single metal atoms, were theoretically investigated to identify promising candidates as nitrogen fixation photocatalysts. Initially, six different single 3d transition-metal atoms, i.e., V, Mn, Fe, Co, Ni, and Cu, were loaded onto g-C3N4, and the optimal single-atom catalyst, Fe@g-C3N4, was selected through reaction energy calculations. This catalyst demonstrated excellent performance in terms of the electronic structure and light absorption properties. Furthermore, machine learning methods were applied to a limited sample set to predict a catalyst with a superior performance beyond the computational samples. Utilizing a backward elimination method and sure independence screening and sparsifying operator (SISSO) training, the key descriptors correlated with the target properties of the catalysts were identified. The SISSO descriptors, consisting of structural and electronic characteristic parameters, are interpretable and provide meaningful insights. Importantly, a catalyst, Ru@g-C3N4, with outstanding performance was predicted and verified by density functional theory calculations. This catalyst design strategy demonstrates promising results with limited computational data, highlighting the potential of combining theoretical simulations with machine learning methods for catalyst design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李倇仪完成签到 ,获得积分10
1秒前
2秒前
2秒前
笨蛋琪露诺完成签到,获得积分10
2秒前
2秒前
打打应助guoguo采纳,获得30
3秒前
chen0424发布了新的文献求助50
4秒前
温暖幻桃发布了新的文献求助10
4秒前
X.-CHEN发布了新的文献求助10
5秒前
5秒前
6秒前
橘子完成签到,获得积分10
6秒前
毛豆应助漂亮幻莲采纳,获得10
6秒前
kaka完成签到,获得积分10
7秒前
dyuguo3完成签到 ,获得积分10
7秒前
7秒前
Deeeppp完成签到,获得积分10
9秒前
永远爱刻晴完成签到 ,获得积分10
10秒前
11秒前
11秒前
小菜鸟001发布了新的文献求助10
13秒前
gqb完成签到,获得积分10
13秒前
研友_LjVvaL完成签到,获得积分10
13秒前
仙人掌发布了新的文献求助10
14秒前
毛豆应助呆萌千凝采纳,获得10
14秒前
毛豆应助呆萌千凝采纳,获得10
14秒前
莫若舞发布了新的文献求助10
15秒前
15秒前
跳跃的白云完成签到 ,获得积分10
15秒前
垚乐应助科研通管家采纳,获得10
15秒前
FashionBoy应助科研通管家采纳,获得10
15秒前
嗯哼应助科研通管家采纳,获得20
15秒前
垚乐应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
垚乐应助科研通管家采纳,获得10
15秒前
yar应助科研通管家采纳,获得10
16秒前
16秒前
yar应助科研通管家采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312139
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521299
捐赠科研通 2620463
什么是DOI,文献DOI怎么找? 1432849
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115