Analyst Forecast Bundling Intensity and Earnings Surprise

惊喜 收益 收益惊喜 强度(物理) 经济 金融经济学 业务 会计 盈利后公告漂移 心理学 收益反应系数 物理 社会心理学 光学
作者
Mary E. Barth,Wayne R. Landsman,Junyoung Jeong,Sean Wang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
标识
DOI:10.2139/ssrn.4839739
摘要

We find analysts convey information about a firm's earnings without fully revising their earnings forecast by increasing bundling intensity, which is the extent to which an analyst report that has an earnings forecast revision includes also price target and/or recommendation revisions with the same sign as the earnings forecast revision. We develop a firm-level measure of bundling intensity, BF_Score, and find it is an economically meaningful predictor of analyst-based earnings surprises. The surprises reflect bias in consensus earnings forecasts related to information analysts convey through bundling intensity. Analysts' use of bundling and the predictive power of BF_Score are higher when macroeconomic uncertainty is higher, which is when analysts' incentives to avoid bold earnings forecast revisions are greater. Additionally, firms with higher BF_Score are more likely to report earnings that barely meet or beat the consensus forecast. This finding suggests analysts make more beatable earnings forecasts to curry favor with management by bundling rather than reflecting all the positive news in higher earnings forecasts. Adjusting analyst-based earnings surprises for the implications of BF_Score results in a distribution of earnings surprises that more closely resembles a normal distribution. Notably, the adjustments reduce the well-known kink asymmetry around zero for consensus analyst forecast-based earnings surprises by 66%, and markedly reduce skewness and kurtosis. Prior research attributes the kink primarily to earnings management. Instead, our findings suggest the kink reflects predictable analyst-based earnings surprises, and highlight the need for research utilizing consensus analyst earnings forecasts and analyst-based earnings surprises to account for these biases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一个小胖子完成签到,获得积分10
1秒前
任性的思远完成签到 ,获得积分10
2秒前
代扁扁完成签到 ,获得积分10
5秒前
林志伟完成签到 ,获得积分10
6秒前
旧城旧巷等旧人完成签到 ,获得积分10
6秒前
凊嗏淡墨完成签到,获得积分10
7秒前
小恐龙飞飞完成签到 ,获得积分10
7秒前
Haonan完成签到,获得积分10
8秒前
优秀的白卉完成签到 ,获得积分10
9秒前
12秒前
盛宇大天才完成签到,获得积分10
13秒前
FIN应助mrhsdy采纳,获得30
13秒前
愉快的宛秋完成签到,获得积分10
13秒前
ccx完成签到,获得积分10
15秒前
zy完成签到 ,获得积分10
16秒前
濮阳盼曼完成签到,获得积分10
18秒前
单薄广山完成签到,获得积分10
18秒前
可盐够完成签到 ,获得积分20
18秒前
青黛完成签到 ,获得积分10
18秒前
guishouyu完成签到,获得积分10
19秒前
蓝天碧海小西服完成签到,获得积分0
20秒前
嗯是我完成签到,获得积分10
21秒前
小超超完成签到 ,获得积分10
24秒前
来了来了完成签到 ,获得积分10
24秒前
cdercder应助科研通管家采纳,获得10
24秒前
cdercder应助科研通管家采纳,获得10
24秒前
cdercder应助科研通管家采纳,获得10
24秒前
cdercder应助科研通管家采纳,获得10
24秒前
Muccio完成签到 ,获得积分10
24秒前
贪玩的访风完成签到 ,获得积分10
26秒前
27秒前
寄语明月完成签到,获得积分10
28秒前
杨羕完成签到,获得积分10
29秒前
30秒前
谭玲慧完成签到 ,获得积分10
33秒前
大气糖豆完成签到 ,获得积分10
34秒前
Jason完成签到 ,获得积分10
34秒前
可盐够发布了新的文献求助10
37秒前
smlij616完成签到 ,获得积分10
39秒前
艾科研完成签到,获得积分10
41秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733511
求助须知:如何正确求助?哪些是违规求助? 3277654
关于积分的说明 10003735
捐赠科研通 2993737
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944