Bi-Objective Combinatorial Optimization Model for Emission Reduction Projects at Container Terminals Considering Investment Amount and Reduction Efficiency

还原(数学) 容器(类型理论) 端口(电路理论) 帕累托原理 温室气体 过程(计算) 投资(军事) 多目标优化 计算机科学 运筹学 工程类 运营管理 数学 法学 机械工程 几何学 政治 政治学 生态学 机器学习 电气工程 生物 操作系统
作者
Ruijia Zhao,Yunting Song,Zhenyu Zhao,Qiang Fu,Ruihao Zhao
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981241255364
摘要

Ports play a significant role in socio-economic development. However, the substantial carbon emissions generated during their operation processes pose serious health and environmental risks. Port operations involve a wide array of expensive equipment. With the current technological methods, it is possible to transform higher carbon-emitting equipment into lower carbon-emitting equipment through the implementation of emission reduction projects, thereby effectively reducing the carbon emissions of ports. This paper explores the combinatorial optimization methods in the implementation process of various emission reduction projects at container terminals from the perspective of port managers. Firstly, this paper refines the calculation method of estimating carbon emission reduction efficiency by implementing various emission reduction projects throughout the entire process from ship arrival to the completion of handling operations. Secondly, considering practical factors such as the required investment, emission reduction efficiency, and the impacts on port productivity associated with implementing varied emission reduction projects, a bi-objective combinatorial optimization model for emission reduction projects is formulated, with the objectives of minimizing both carbon emissions and the investment amount. An augmented ε-constraint method is introduced to obtain the Pareto solutions, which representing a series of implementation plans for emission reduction projects under different investment levels. Finally, the concept of the “emission reduction rate” is proposed to identify the optimal scheme from the Pareto solutions. The impacts of government carbon emission requirements, status of implemented emission reduction projects, container throughput, and differences in vehicle types on optimization results are explored, leading to several managerial insights. The optimization method can provide a theoretical basis for port managers to devise investment plans for emission reduction projects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Criminology34应助失眠的耳机采纳,获得10
刚刚
静默完成签到,获得积分10
刚刚
Akim应助yyyyyyyyy采纳,获得10
1秒前
猪猪侠完成签到,获得积分10
1秒前
花源应助恰你眉目如昨采纳,获得20
1秒前
bkagyin应助熊猫采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
Liurthis发布了新的文献求助30
3秒前
3秒前
仁爱听露完成签到 ,获得积分10
3秒前
3秒前
Polaris发布了新的文献求助10
4秒前
大个应助飘逸的翼采纳,获得10
4秒前
在在发布了新的文献求助10
5秒前
5秒前
5秒前
hailiangzheng完成签到,获得积分10
5秒前
歪歪yyyyc完成签到,获得积分10
5秒前
英姑应助怕黑白亦采纳,获得30
6秒前
6秒前
7秒前
Charlene完成签到,获得积分20
8秒前
万能图书馆应助轻松雁蓉采纳,获得10
9秒前
机灵人雄发布了新的文献求助10
9秒前
9秒前
AN1AN应助谢昊宸采纳,获得10
9秒前
失眠的耳机完成签到,获得积分10
10秒前
11秒前
千幻完成签到,获得积分10
11秒前
11秒前
Jasper应助AireenBeryl531采纳,获得10
12秒前
归尘发布了新的文献求助10
12秒前
糖布里部发布了新的文献求助10
13秒前
CWNU_HAN应助Sensons采纳,获得30
13秒前
归尘发布了新的文献求助10
14秒前
14秒前
科研通AI6应助若水三千采纳,获得10
14秒前
JamesPei应助cjq采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610111
求助须知:如何正确求助?哪些是违规求助? 4694594
关于积分的说明 14883542
捐赠科研通 4721206
什么是DOI,文献DOI怎么找? 2544999
邀请新用户注册赠送积分活动 1509911
关于科研通互助平台的介绍 1473039