硒
细菌
嗜盐菌
微生物学
化学
生物
遗传学
有机化学
作者
Kishore Kumar Annamalai,S. Bharathi,Kumaran Subramanian,Reem Binsuwaidan,Mοhd Saeed
标识
DOI:10.1016/j.micpath.2024.106740
摘要
Biofilm-forming microbes can pose a major health risk that is difficult to combat. Nanotechnology, on the other hand, represents a novel technique for combating and eliminating biofilm-forming microbes. In this study, the selenium nanoparticles (SeNPs) were biosynthesized from moderate halophilic bacteria isolated from Pichavaram mangrove sediments. The bacterial strain S8 was found to be efficient for SeNPs synthesis and hence identified by 16s r RNA sequencing as Shewanella sp. In UV- spectral analysis the SeNPs displayed a peak at 320 nm due to surface plasmon resonance (SPR). The cell-free extract of Shewanella sp. and SeNPs indicates that the various functional groups in the cell-free extract were mainly involved in the synthesis and stabilization of SeNPs. The SeNPs had a spherical form with average diameter of 49 ± 0.01 nm, according to the FESEM analysis. The EDX shows the distinctive peaks of selenium at 1.37, 11.22.12.49 Kev. In the agar well diffusion method, the SeNPs show inhibitory activity against all the test pathogens with the highest activity noted against P. aeruginosa with a zone of inhibition of 22.7 ± 0.3 mm. The minimal inhibitory concentration (MIC) value of 80 μg/ml, minimal bactericidal concentration (MBC) of 160 μg/ml, and susceptibility constant of 0.043 μg/ml show that SeNPs highly effective against P. aeruginosa. The Sub-MIC value of SeNPs of 20 μg/ml was found to inhibit P. aeruginosa biofilm by 85% as compared to the control. Further, the anti-virulence properties viz., pyocyanin, pyoverdine, hemolytic, and protease inhibition revealed the synthesized SeNPs from halophilic bacteria control the pathogenicity of P. aeruginosa.
科研通智能强力驱动
Strongly Powered by AbleSci AI