A Comparison of Denoising Approaches for Spoken Word Production Related Artefacts in Continuous Multiband fMRI Data

降噪 语音识别 计算机科学 生产(经济) 词(群论) 人工智能 自然语言处理 心理学 语言学 哲学 宏观经济学 经济
作者
Angélique Volfart,Katie L. McMahon,Greig I. de Zubicaray
出处
期刊:Neurobiology of language [MIT Press]
卷期号:5 (4): 901-921
标识
DOI:10.1162/nol_a_00151
摘要

It is well-established from fMRI experiments employing gradient echo echo-planar imaging (EPI) sequences that overt speech production introduces signal artefacts compromising accurate detection of task-related responses. Both design and post-processing (denoising) techniques have been proposed and implemented over the years to mitigate the various noise sources. Recently, fMRI studies of speech production have begun to adopt multiband EPI sequences that offer better signal-to-noise ratio (SNR) and temporal resolution allowing adequate sampling of physiological noise sources (e.g., respiration, cardiovascular effects) and reduced scanner acoustic noise. However, these new sequences may also introduce additional noise sources. In this study, we demonstrate the impact of applying several noise-estimation and removal approaches to continuous multiband fMRI data acquired during a naming-to-definition task, including rigid body motion regression and outlier censoring, principal component analysis for removal of cerebrospinal fluid (CSF)/edge-related noise components, and global fMRI signal regression (using two different approaches) compared to a baseline of realignment and unwarping alone. Our results show the strongest and most spatially extensive sources of physiological noise are the global signal fluctuations arising from respiration and muscle action and CSF/edge-related noise components, with residual rigid body motion contributing relatively little variance. Interestingly, denoising approaches tended to reduce and enhance task-related BOLD signal increases and decreases, respectively. Global signal regression using a voxel-wise linear model of the global signal estimated from unmasked data resulted in dramatic improvements in temporal SNR. Overall, these findings show the benefits of combining continuous multiband EPI sequences and denoising approaches to investigate the neurobiology of speech production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qjt完成签到,获得积分10
1秒前
xiangli发布了新的文献求助10
1秒前
1秒前
学术虫发布了新的文献求助10
2秒前
FashionBoy应助Ilan采纳,获得10
3秒前
夏沫发布了新的文献求助10
3秒前
ccccccp发布了新的文献求助10
3秒前
王建国完成签到,获得积分10
3秒前
3秒前
Olivia完成签到,获得积分10
4秒前
Niko发布了新的文献求助10
5秒前
小二郎应助zhanglongquan采纳,获得10
6秒前
jinlioze发布了新的文献求助10
6秒前
乐乐应助东东采纳,获得10
6秒前
qjt发布了新的文献求助10
7秒前
小孙孙完成签到,获得积分10
7秒前
ZKJ发布了新的文献求助10
9秒前
9秒前
失眠紫青完成签到 ,获得积分10
11秒前
调皮从筠完成签到 ,获得积分10
11秒前
火星上眼睛完成签到,获得积分10
11秒前
隐形曼青应助学术虫采纳,获得10
12秒前
Water发布了新的文献求助10
12秒前
13秒前
13秒前
思源应助小孙孙采纳,获得10
14秒前
芋泥啵啵发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
顾矜应助cony采纳,获得10
16秒前
16秒前
蒋雪静发布了新的文献求助50
18秒前
18秒前
烂漫臻发布了新的文献求助10
18秒前
18秒前
YY发布了新的文献求助10
18秒前
宣仰完成签到,获得积分10
18秒前
19秒前
英姑应助靓丽芙蓉采纳,获得10
19秒前
我的文献呢应助lmh采纳,获得30
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971125
求助须知:如何正确求助?哪些是违规求助? 3515824
关于积分的说明 11179811
捐赠科研通 3250971
什么是DOI,文献DOI怎么找? 1795610
邀请新用户注册赠送积分活动 875897
科研通“疑难数据库(出版商)”最低求助积分说明 805207