A Comparison of Denoising Approaches for Spoken Word Production Related Artefacts in Continuous Multiband fMRI Data

降噪 语音识别 计算机科学 生产(经济) 词(群论) 人工智能 自然语言处理 心理学 语言学 哲学 宏观经济学 经济
作者
Angélique Volfart,Katie L. McMahon,Greig I. de Zubicaray
出处
期刊:Neurobiology of language [MIT Press]
卷期号:5 (4): 901-921
标识
DOI:10.1162/nol_a_00151
摘要

It is well-established from fMRI experiments employing gradient echo echo-planar imaging (EPI) sequences that overt speech production introduces signal artefacts compromising accurate detection of task-related responses. Both design and post-processing (denoising) techniques have been proposed and implemented over the years to mitigate the various noise sources. Recently, fMRI studies of speech production have begun to adopt multiband EPI sequences that offer better signal-to-noise ratio (SNR) and temporal resolution allowing adequate sampling of physiological noise sources (e.g., respiration, cardiovascular effects) and reduced scanner acoustic noise. However, these new sequences may also introduce additional noise sources. In this study, we demonstrate the impact of applying several noise-estimation and removal approaches to continuous multiband fMRI data acquired during a naming-to-definition task, including rigid body motion regression and outlier censoring, principal component analysis for removal of cerebrospinal fluid (CSF)/edge-related noise components, and global fMRI signal regression (using two different approaches) compared to a baseline of realignment and unwarping alone. Our results show the strongest and most spatially extensive sources of physiological noise are the global signal fluctuations arising from respiration and muscle action and CSF/edge-related noise components, with residual rigid body motion contributing relatively little variance. Interestingly, denoising approaches tended to reduce and enhance task-related BOLD signal increases and decreases, respectively. Global signal regression using a voxel-wise linear model of the global signal estimated from unmasked data resulted in dramatic improvements in temporal SNR. Overall, these findings show the benefits of combining continuous multiband EPI sequences and denoising approaches to investigate the neurobiology of speech production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spy完成签到 ,获得积分10
1秒前
1秒前
2秒前
五十完成签到,获得积分10
4秒前
Wxxxxx完成签到 ,获得积分10
4秒前
木木完成签到,获得积分10
4秒前
5秒前
6秒前
yangjoy发布了新的文献求助10
7秒前
wanci应助老实的采蓝采纳,获得10
8秒前
威哥完成签到,获得积分10
9秒前
斯可发布了新的文献求助10
9秒前
桐桐应助lh961129采纳,获得10
10秒前
JUZI发布了新的文献求助10
11秒前
Lendar完成签到 ,获得积分10
11秒前
RuiBigHead发布了新的文献求助10
12秒前
13秒前
跳跃的洋葱完成签到 ,获得积分10
13秒前
13秒前
yangjoy完成签到,获得积分10
14秒前
pinklay完成签到 ,获得积分10
14秒前
14秒前
科研通AI5应助ttt采纳,获得10
15秒前
重要问旋完成签到,获得积分10
15秒前
16秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得30
17秒前
老阎应助科研通管家采纳,获得30
17秒前
姜莹应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
在水一方应助科研通管家采纳,获得10
17秒前
英姑应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066