A Comparison of Denoising Approaches for Spoken Word Production Related Artefacts in Continuous Multiband fMRI Data

降噪 语音识别 计算机科学 生产(经济) 词(群论) 人工智能 自然语言处理 心理学 语言学 经济 宏观经济学 哲学
作者
Angélique Volfart,Katie L. McMahon,Greig I. de Zubicaray
出处
期刊:Neurobiology of language [MIT Press]
卷期号:5 (4): 901-921
标识
DOI:10.1162/nol_a_00151
摘要

It is well-established from fMRI experiments employing gradient echo echo-planar imaging (EPI) sequences that overt speech production introduces signal artefacts compromising accurate detection of task-related responses. Both design and post-processing (denoising) techniques have been proposed and implemented over the years to mitigate the various noise sources. Recently, fMRI studies of speech production have begun to adopt multiband EPI sequences that offer better signal-to-noise ratio (SNR) and temporal resolution allowing adequate sampling of physiological noise sources (e.g., respiration, cardiovascular effects) and reduced scanner acoustic noise. However, these new sequences may also introduce additional noise sources. In this study, we demonstrate the impact of applying several noise-estimation and removal approaches to continuous multiband fMRI data acquired during a naming-to-definition task, including rigid body motion regression and outlier censoring, principal component analysis for removal of cerebrospinal fluid (CSF)/edge-related noise components, and global fMRI signal regression (using two different approaches) compared to a baseline of realignment and unwarping alone. Our results show the strongest and most spatially extensive sources of physiological noise are the global signal fluctuations arising from respiration and muscle action and CSF/edge-related noise components, with residual rigid body motion contributing relatively little variance. Interestingly, denoising approaches tended to reduce and enhance task-related BOLD signal increases and decreases, respectively. Global signal regression using a voxel-wise linear model of the global signal estimated from unmasked data resulted in dramatic improvements in temporal SNR. Overall, these findings show the benefits of combining continuous multiband EPI sequences and denoising approaches to investigate the neurobiology of speech production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助Improve采纳,获得10
刚刚
爆米花应助拾忆采纳,获得10
1秒前
1秒前
1秒前
英俊的铭应助水三寿采纳,获得10
1秒前
2秒前
海蓝完成签到,获得积分10
2秒前
Rhan完成签到,获得积分10
2秒前
wan1223发布了新的文献求助10
2秒前
2秒前
2秒前
充电宝应助zhangyuheng采纳,获得10
3秒前
如昨发布了新的文献求助10
3秒前
3秒前
4秒前
chenting发布了新的文献求助10
4秒前
复原乳完成签到,获得积分10
5秒前
5秒前
haihai发布了新的文献求助10
5秒前
2105发布了新的文献求助10
5秒前
文静幻枫完成签到 ,获得积分10
6秒前
Lisztan完成签到,获得积分10
6秒前
科研通AI2S应助西西采纳,获得10
6秒前
ACOY应助大王具足虫采纳,获得10
7秒前
夏大雨发布了新的文献求助10
7秒前
yvonne发布了新的文献求助10
8秒前
10秒前
11秒前
NexusExplorer应助芋圆采纳,获得10
11秒前
太阳当下完成签到,获得积分10
11秒前
11秒前
薛妖怪发布了新的文献求助10
11秒前
学术屎壳郎完成签到 ,获得积分10
12秒前
ys完成签到,获得积分10
12秒前
内向的焦完成签到 ,获得积分10
12秒前
13秒前
13秒前
haihai完成签到,获得积分10
13秒前
wfy1227完成签到,获得积分10
14秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305566
求助须知:如何正确求助?哪些是违规求助? 2939312
关于积分的说明 8492936
捐赠科研通 2613754
什么是DOI,文献DOI怎么找? 1427569
科研通“疑难数据库(出版商)”最低求助积分说明 663115
邀请新用户注册赠送积分活动 647883