已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off

可用性 外推法 降级(电信) 多样性(政治) 计算机科学 人机交互 统计 数学 人类学 电信 社会学
作者
Xiao Yan Li,De Jun Cheng,Xi Feng Fang,Chun Yan Zhang,Yu Feng Wang
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:249: 110238-110238 被引量:1
标识
DOI:10.1016/j.ress.2024.110238
摘要

For aeroengine multitask prognosis, dataset's quantity and quality significantly affect the prediction performance. Due to the insufficiency and high redundancy of collected data, data augmentation techniques are widely utilized in industrial scenarios. However, traditional methods struggle to balance the degradation behavior diversity along with the usability of generated data. To tackle these challenges, this study proposes a novel data augmentation framework for aeroengine multitask prognosis. A novel First Predicting Time (FPT) identification method is proposed to identify the degradation starting point through Health Indictor (HI) volatility. Then, an optimal data augmentation strategy is designed based on Dual Discriminator Time-series Generative Adversarial Network (DDTGAN) and Negative Sample Elimination (NSE), which can enrich samples by extrapolating degradation behavior with multi-scale temporal features, and eliminating unqualified samples to obtain optimal generated samples through diversity-usability trade-off. Based on these, an adaptive Transformer-Multi-gate Mixture-Of-Experts (T-MMOE) multitask prognosis model with gradient normalization is constructed to predict Remaining Useful Life (RUL) and diagnose faults simultaneously with dynamic weights trade-off between two tasks. The proposed framework was compared with other models through the C-MAPSS dataset. Comparison results manifest that the proposed framework is not only able to generate realistic high-quality time-series data but also outperforms the other prognosis models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助高山七石采纳,获得10
3秒前
李李发布了新的文献求助10
4秒前
Jason完成签到,获得积分10
4秒前
yyh发布了新的文献求助50
7秒前
谢丹完成签到 ,获得积分10
7秒前
莉莉斯完成签到 ,获得积分10
9秒前
9秒前
20秒前
可爱电话发布了新的文献求助10
20秒前
可可大人完成签到 ,获得积分10
24秒前
109完成签到,获得积分10
26秒前
求文献完成签到,获得积分10
27秒前
Owen应助cjh采纳,获得10
29秒前
Diamond完成签到 ,获得积分10
30秒前
榴莲姑娘完成签到 ,获得积分10
30秒前
31秒前
yunyueqixun发布了新的文献求助10
37秒前
可爱电话完成签到,获得积分10
37秒前
38秒前
顾矜应助英俊的无颜采纳,获得10
40秒前
43秒前
啥时候吃火锅完成签到 ,获得积分0
45秒前
闪闪映易完成签到,获得积分10
46秒前
cjh发布了新的文献求助10
49秒前
所所应助重要的夏烟采纳,获得10
50秒前
51秒前
天天快乐应助yunyueqixun采纳,获得10
52秒前
56秒前
汉堡包应助狄绮采纳,获得10
57秒前
1分钟前
1分钟前
深情安青应助Mayday采纳,获得10
1分钟前
狄绮发布了新的文献求助10
1分钟前
lulu完成签到,获得积分10
1分钟前
海与猫完成签到 ,获得积分10
1分钟前
狄绮完成签到,获得积分10
1分钟前
yunyueqixun完成签到 ,获得积分20
1分钟前
1分钟前
鲤鱼安青完成签到 ,获得积分10
1分钟前
yuwen发布了新的文献求助10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513192
关于积分的说明 11166765
捐赠科研通 3248426
什么是DOI,文献DOI怎么找? 1794246
邀请新用户注册赠送积分活动 874950
科研通“疑难数据库(出版商)”最低求助积分说明 804629