A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off

可用性 外推法 降级(电信) 多样性(政治) 计算机科学 人机交互 统计 数学 人类学 电信 社会学
作者
Xiao Yan Li,De Jun Cheng,Xi Feng Fang,Chun Yan Zhang,Yu Feng Wang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:249: 110238-110238 被引量:1
标识
DOI:10.1016/j.ress.2024.110238
摘要

For aeroengine multitask prognosis, dataset's quantity and quality significantly affect the prediction performance. Due to the insufficiency and high redundancy of collected data, data augmentation techniques are widely utilized in industrial scenarios. However, traditional methods struggle to balance the degradation behavior diversity along with the usability of generated data. To tackle these challenges, this study proposes a novel data augmentation framework for aeroengine multitask prognosis. A novel First Predicting Time (FPT) identification method is proposed to identify the degradation starting point through Health Indictor (HI) volatility. Then, an optimal data augmentation strategy is designed based on Dual Discriminator Time-series Generative Adversarial Network (DDTGAN) and Negative Sample Elimination (NSE), which can enrich samples by extrapolating degradation behavior with multi-scale temporal features, and eliminating unqualified samples to obtain optimal generated samples through diversity-usability trade-off. Based on these, an adaptive Transformer-Multi-gate Mixture-Of-Experts (T-MMOE) multitask prognosis model with gradient normalization is constructed to predict Remaining Useful Life (RUL) and diagnose faults simultaneously with dynamic weights trade-off between two tasks. The proposed framework was compared with other models through the C-MAPSS dataset. Comparison results manifest that the proposed framework is not only able to generate realistic high-quality time-series data but also outperforms the other prognosis models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
智慧发布了新的文献求助30
1秒前
DTS发布了新的文献求助10
2秒前
YI_JIA_YI完成签到,获得积分10
2秒前
小痞子完成签到 ,获得积分10
2秒前
苗灵雁完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
善学以致用应助超级的鞅采纳,获得10
3秒前
猪猪hero应助elang采纳,获得10
4秒前
weiyi发布了新的文献求助10
5秒前
佩琪完成签到,获得积分10
5秒前
包容秋珊发布了新的文献求助10
5秒前
缥缈的涵菡完成签到 ,获得积分10
6秒前
冷酷的溜溜梅完成签到 ,获得积分10
6秒前
7秒前
kaikai完成签到,获得积分10
7秒前
鱼鱼鱼发布了新的文献求助10
7秒前
带善人完成签到,获得积分10
7秒前
8秒前
8秒前
科研通AI6应助zhangyulong采纳,获得10
8秒前
爆爆发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
小雨堂完成签到,获得积分10
10秒前
研友_VZG7GZ应助萝卜采纳,获得10
11秒前
11秒前
11秒前
hu123完成签到,获得积分10
12秒前
领导范儿应助DTS采纳,获得10
12秒前
12秒前
moyu37完成签到,获得积分10
12秒前
12秒前
13秒前
李xxxx发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802