A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off

可用性 外推法 降级(电信) 多样性(政治) 计算机科学 人机交互 统计 数学 电信 社会学 人类学
作者
Xiao Yan Li,De Jun Cheng,Xi Feng Fang,Chun Yan Zhang,Yu Feng Wang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:249: 110238-110238 被引量:1
标识
DOI:10.1016/j.ress.2024.110238
摘要

For aeroengine multitask prognosis, dataset's quantity and quality significantly affect the prediction performance. Due to the insufficiency and high redundancy of collected data, data augmentation techniques are widely utilized in industrial scenarios. However, traditional methods struggle to balance the degradation behavior diversity along with the usability of generated data. To tackle these challenges, this study proposes a novel data augmentation framework for aeroengine multitask prognosis. A novel First Predicting Time (FPT) identification method is proposed to identify the degradation starting point through Health Indictor (HI) volatility. Then, an optimal data augmentation strategy is designed based on Dual Discriminator Time-series Generative Adversarial Network (DDTGAN) and Negative Sample Elimination (NSE), which can enrich samples by extrapolating degradation behavior with multi-scale temporal features, and eliminating unqualified samples to obtain optimal generated samples through diversity-usability trade-off. Based on these, an adaptive Transformer-Multi-gate Mixture-Of-Experts (T-MMOE) multitask prognosis model with gradient normalization is constructed to predict Remaining Useful Life (RUL) and diagnose faults simultaneously with dynamic weights trade-off between two tasks. The proposed framework was compared with other models through the C-MAPSS dataset. Comparison results manifest that the proposed framework is not only able to generate realistic high-quality time-series data but also outperforms the other prognosis models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
渣渣凡完成签到,获得积分10
1秒前
you完成签到 ,获得积分10
2秒前
一路生花完成签到,获得积分10
2秒前
Naive发布了新的文献求助30
3秒前
3秒前
3秒前
4秒前
5秒前
lala完成签到,获得积分10
6秒前
hwq发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
左彦完成签到,获得积分10
8秒前
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
bkagyin应助激昂的背包采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
lvlvlvsh发布了新的文献求助10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
遠方完成签到 ,获得积分10
9秒前
小二郎应助科研通管家采纳,获得10
10秒前
淡然冬灵应助科研通管家采纳,获得10
10秒前
左耳钉应助科研通管家采纳,获得50
10秒前
华仔应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
10秒前
甜甜妙梦发布了新的文献求助10
11秒前
阳光完成签到,获得积分10
11秒前
九珥完成签到,获得积分10
12秒前
hwq完成签到,获得积分10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304627
求助须知:如何正确求助?哪些是违规求助? 2938626
关于积分的说明 8489303
捐赠科研通 2613106
什么是DOI,文献DOI怎么找? 1427111
科研通“疑难数据库(出版商)”最低求助积分说明 662895
邀请新用户注册赠送积分活动 647487