A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off

可用性 外推法 降级(电信) 多样性(政治) 计算机科学 人机交互 统计 数学 电信 社会学 人类学
作者
Xiao Yan Li,De Jun Cheng,Xi Feng Fang,Chun Yan Zhang,Yu Feng Wang
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:249: 110238-110238 被引量:1
标识
DOI:10.1016/j.ress.2024.110238
摘要

For aeroengine multitask prognosis, dataset's quantity and quality significantly affect the prediction performance. Due to the insufficiency and high redundancy of collected data, data augmentation techniques are widely utilized in industrial scenarios. However, traditional methods struggle to balance the degradation behavior diversity along with the usability of generated data. To tackle these challenges, this study proposes a novel data augmentation framework for aeroengine multitask prognosis. A novel First Predicting Time (FPT) identification method is proposed to identify the degradation starting point through Health Indictor (HI) volatility. Then, an optimal data augmentation strategy is designed based on Dual Discriminator Time-series Generative Adversarial Network (DDTGAN) and Negative Sample Elimination (NSE), which can enrich samples by extrapolating degradation behavior with multi-scale temporal features, and eliminating unqualified samples to obtain optimal generated samples through diversity-usability trade-off. Based on these, an adaptive Transformer-Multi-gate Mixture-Of-Experts (T-MMOE) multitask prognosis model with gradient normalization is constructed to predict Remaining Useful Life (RUL) and diagnose faults simultaneously with dynamic weights trade-off between two tasks. The proposed framework was compared with other models through the C-MAPSS dataset. Comparison results manifest that the proposed framework is not only able to generate realistic high-quality time-series data but also outperforms the other prognosis models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范范发布了新的文献求助10
刚刚
倩迷谜完成签到,获得积分0
1秒前
1秒前
酷酷的紫南完成签到 ,获得积分10
2秒前
迷人凡旋完成签到,获得积分20
2秒前
JamesPei应助大李包采纳,获得10
2秒前
2秒前
天涯完成签到 ,获得积分10
3秒前
shr完成签到,获得积分10
3秒前
落后以旋完成签到,获得积分10
3秒前
小二郎应助缚大哥采纳,获得10
3秒前
充电宝应助青木蓝采纳,获得10
4秒前
云中渊发布了新的文献求助10
4秒前
冷静的毛豆完成签到,获得积分10
4秒前
涵Allen完成签到 ,获得积分10
4秒前
思源应助wzxxxx采纳,获得10
4秒前
隐形曼青应助shelly0621采纳,获得10
5秒前
无敌鱼发布了新的文献求助10
5秒前
6秒前
meimei完成签到,获得积分10
6秒前
朴实的薯片完成签到,获得积分10
7秒前
way完成签到,获得积分10
8秒前
脑洞疼应助Chan0501采纳,获得10
9秒前
fancy完成签到 ,获得积分10
9秒前
Maglev发布了新的文献求助10
10秒前
10秒前
含糊的代丝完成签到 ,获得积分10
10秒前
10秒前
11秒前
小九发布了新的文献求助20
11秒前
zhui发布了新的文献求助10
12秒前
通达完成签到,获得积分10
13秒前
FashionBoy应助猪猪hero采纳,获得10
13秒前
jy发布了新的文献求助10
13秒前
祥云完成签到,获得积分10
13秒前
无敌鱼完成签到,获得积分10
14秒前
ffu完成签到 ,获得积分10
14秒前
天天快乐应助好的采纳,获得10
14秒前
14秒前
香蕉觅云应助科研小白花采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794