化学物理
化学
细胞器
膜
化学反应
生物物理学
生物系统
材料科学
物理
有机化学
生物
生物化学
作者
Gregor Ibbeken,Marcus Müller
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-06-14
标识
DOI:10.1021/acsnano.3c12842
摘要
The cellular environment, characterized by its intricate composition and spatial organization, hosts a variety of organelles, ranging from membrane-bound ones to membraneless structures that are formed through liquid–liquid phase separation. Cells show precise control over the position of such condensates. We demonstrate that organelle movement in external concentration gradients, diffusiophoresis, is distinct from the one of colloids because fluxes can remain finite inside the liquid-phase droplets and movement of the latter arises from incompressibility. Within cellular domains diffusiophoresis naturally arises from biochemical reactions that are driven by a chemical fuel and produce waste. Simulations and analytical arguments within a minimal model of reaction-driven phase separation reveal that the directed movement stems from two contributions: Fuel and waste are refilled or extracted at the boundary, resulting in concentration gradients, which (i) induce product fluxes via incompressibility and (ii) result in an asymmetric forward reaction in the droplet's surroundings (as well as asymmetric backward reaction inside the droplet), thereby shifting the droplet's position. We show that the former contribution dominates and sets the direction of the movement, toward or away from fuel source and waste sink, depending on the product molecules' affinity toward fuel and waste, respectively. The mechanism thus provides a simple means to organize condensates with different composition. Particle-based simulations and systems with more complex reaction cycles corroborate the robustness and universality of this mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI