Experimental study on the discharge characteristics of an air rotating gliding arc

弧(几何) 环境科学 电弧 材料科学 气象学 机械 航空航天工程 工程类 机械工程 物理 电极 量子力学
作者
Su‐Rong Sun,Fei Chen,Yu-Hang Zheng,Chao Wang,Hai‐Xing Wang
出处
期刊:Plasma Sources Science and Technology [IOP Publishing]
卷期号:33 (7): 075013-075013 被引量:3
标识
DOI:10.1088/1361-6595/ad5401
摘要

Abstract In this study, the discharge characteristics of an air rotating gliding arc (RGA) are investigated by synchronous measurements of a digital oscilloscope and a high-speed camera, and the emission spectrum measurement. The discharge evolution in one complete motion cycle exhibits a ‘breakdown-elongation-extinction’ process accompanied by a jump phenomenon of the arc root and a back-breakdown phenomenon. The discharge evolves from the unstable breakdown mode (U-B), to the transition mode and finally to the stable gliding mode (S-G) by increasing the input voltage or decreasing the tangential and axial gas flow rates. The U-B mode at an input voltage of 120 V is featured by the large reduced electric field and high electron temperature of 1.90 eV, but the arc length and existence time are very short. The S-G mode at an input voltage of 270 V has a relatively low breakdown frequency of 0.33 kHz and an average breakdown current of 1.31 A, implying that the arc steadily glides and rotates along the spiral electrode. The average electron temperature is 0.64 eV in the S-G mode, while the arc length and existence time are longer. The rotational and vibrational temperatures of the N 2 ( C 3 u ) state are respectively measured at 2200 K and 4400 K in the U-B mode, and in the S-G mode are 2600 K and 4820 K. From the evolution of emission intensities of measured excited species, it is found that the NO γ band emission intensity generally rises from the U-B mode to the S-G mode since the gas temperature and arc existence time rise, indicating that the S-G mode may be beneficial for the vibrationally promoted Zeldovich reactions. This study could deepen the understanding of arc characteristics in air RGA for selecting a suitable mode to achieve better plasma performance in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wan关闭了wan文献求助
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
黔北胡歌完成签到,获得积分10
刚刚
陆离完成签到 ,获得积分10
刚刚
漂亮白云发布了新的文献求助10
刚刚
李雅琪发布了新的文献求助10
刚刚
顾矜应助HYH采纳,获得30
1秒前
研友_Zb0a4L发布了新的文献求助30
1秒前
清秀尔竹完成签到 ,获得积分10
1秒前
遠山完成签到,获得积分10
1秒前
香蕉觅云应助何何何采纳,获得10
1秒前
HaKiZ完成签到,获得积分10
1秒前
黔北胡歌发布了新的文献求助10
2秒前
轨迹完成签到,获得积分10
2秒前
思源应助病理委托采纳,获得10
3秒前
李奚完成签到,获得积分10
3秒前
lee1992完成签到,获得积分10
4秒前
俊逸香岚发布了新的文献求助10
4秒前
ccccccp完成签到,获得积分10
4秒前
友好的乐曲完成签到,获得积分10
4秒前
我是老大应助HaKiZ采纳,获得10
4秒前
5秒前
5秒前
alex发布了新的文献求助10
5秒前
5秒前
精明的老九关注了科研通微信公众号
5秒前
哈哈哈完成签到,获得积分10
5秒前
tansl1989发布了新的文献求助10
6秒前
pufanlg完成签到,获得积分10
7秒前
wwwhan完成签到,获得积分10
8秒前
8秒前
默默问晴完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
kmkz完成签到,获得积分10
10秒前
AneyWinter66应助Cara采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494