Few-shot target detection in SAR imagery via intensive meta-feature aggregation

合成孔径雷达 计算机科学 弹丸 遥感 特征(语言学) 雷达成像 逆合成孔径雷达 人工智能 特征提取 变更检测 计算机视觉 模式识别(心理学) 地质学 雷达 电信 语言学 化学 哲学 有机化学
作者
Zheng Zhou,Zongjie Cao,Qin Chen,Kailing Tang,Yujian Li,Yiming Pi,Zongyong Cui
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-19 被引量:1
标识
DOI:10.1109/tgrs.2024.3405637
摘要

Synthetic Aperture Radar (SAR) targets often exhibit characteristics such as high mobility and strong concealment, resulting in scarce SAR data and the manifestation of few-shot data properties. These few-shot SAR targets are susceptible to interference from complex background information and mutual interference of target features, making it challenging to distinguish SAR targets from the background. Additionally, there is confusion in features among different targets, leading to models being highly insensitive to few-shot SAR targets under complex distribution conditions in new tasks. Similarly, these few-shot SAR targets exhibit significant sample scarcity and sample variations, resulting in pronounced fluctuations in class centers and difficulty in determining sample distributions. This leads to challenges in accurately representing the potential representative features of few-shot SAR targets by the model. To address these issues, further enhancement of SAR target features is necessary to provide a robust foundation for the ultimate aggregation module. Therefore, based on the meta-learning paradigm, we propose a method for few-shot target detection in SAR imagery via intensive meta-feature aggregation (IMFA), aiming to reinforce SAR target features for improved representation. Specifically, firstly, we propose a novel hierarchical multi-head cross attention (HMCA) to capture global multiscale contextual information in different subspaces and analyze representative features between different targets to distinguish SAR targets from the background. Then, based on HMCA, we introduce a novel feature coupling module (FCM) to couple support features with cognitive information from the query image on the support branch. This is done to reduce the confusion and mutual interference of features between targets while enhancing the model's generalization ability on new tasks. Finally, on the support branch with query-aware information, we construct a Gaussian distribution to estimate the class distribution of few-shot SAR targets and replace traditional class prototypes. On this basis, we propose the feature information maximization module (FIMM) to avoid feature information shift, greatly strengthening the expression of potential features. Through these steps, reinforced meta-features can be obtained, enabling efficient aggregation. Experiments on the SRSDD-v1.0 and MSAR-1.0 datasets demonstrate that our method has consistently outperformed state-of-the-art approaches in all configurations, achieving state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1+1应助llllhh采纳,获得10
1秒前
1秒前
1秒前
哈哈发布了新的文献求助10
1秒前
2秒前
4秒前
扣脚盟发布了新的文献求助10
4秒前
4秒前
Liberal-5完成签到 ,获得积分10
4秒前
TangRan完成签到 ,获得积分10
5秒前
欢呼钧发布了新的文献求助10
5秒前
何桶发布了新的文献求助10
5秒前
wangruize发布了新的文献求助10
7秒前
7秒前
KevinL完成签到,获得积分10
7秒前
小通完成签到,获得积分10
7秒前
咸鱼想翻身发布了新的文献求助100
7秒前
7秒前
欣慰寄风发布了新的文献求助10
8秒前
wzxx发布了新的文献求助10
8秒前
zongle发布了新的文献求助10
8秒前
无花果应助无铭采纳,获得10
9秒前
yc发布了新的文献求助10
9秒前
Rui发布了新的文献求助10
9秒前
萧七七完成签到,获得积分10
9秒前
CodeCraft应助大白狐狸采纳,获得10
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
lwh完成签到,获得积分10
12秒前
12秒前
非要起名发布了新的文献求助10
13秒前
李健应助坚定涵柏采纳,获得10
13秒前
13秒前
华仔应助知性的千秋采纳,获得10
13秒前
小通发布了新的文献求助10
13秒前
今后应助合适板栗采纳,获得10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755562
求助须知:如何正确求助?哪些是违规求助? 3298696
关于积分的说明 10106720
捐赠科研通 3013351
什么是DOI,文献DOI怎么找? 1655100
邀请新用户注册赠送积分活动 789453
科研通“疑难数据库(出版商)”最低求助积分说明 753286