Dynamic simulation-assisted Gaussian mixture alignment approach for fault diagnosis of rotation machinery under small samples

旋转(数学) 高斯分布 计算机科学 断层(地质) 人工智能 地质学 物理 地震学 量子力学
作者
shubo yu,Zhansheng Liu,Gaorong Zhang,Saibo Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096106-096106
标识
DOI:10.1088/1361-6501/ad50fb
摘要

Abstract Obtaining a substantial number of actual samples for rotating machinery in an industrial setting can be challenging, particularly when faulty samples are acquired under hazardous working conditions. The issue of insufficient samples hinders the effective training of reliable fault diagnosis models, impeding the industrial implementation of advanced intelligent methods. This study proposes an innovative dynamic simulation-assisted Gaussian mixture alignment model (DSGMA) to address the challenge of applying fault diagnosis technologies, with its performance mined by advanced transfer algorithms. Specifically, we establish a fault dynamics model for rotating machinery and acquire a substantial amount of simulated data as the source domain to facilitate the training of the deep neural network model. Subsequently, we propose a Gaussian mixture-guided domain alignment approach that assigns a domain-independent Gaussian distribution to each category as prior knowledge, with the parameters calculated using limited actual samples. Diagnostic knowledge is transferred from the source domain to the target domain by minimizing the Kullback–Leibler divergence between the features of the simulated samples and the Gaussian mixture priors. Furthermore, the DSGMA model incorporates Gaussian clustering loss to augment the clustering capability of samples belonging to the same category from real devices and enhances the computational stability of the parameters in the Gaussian mixture model. The efficacy of the DSGMA method is validated using three publicly available datasets and compared against five widely adopted methods. The experimental findings illustrate that DSGMA exhibits superior diagnostic and robust capabilities, facilitating efficient fault diagnosis under scenarios of small samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助ahingone采纳,获得10
1秒前
manforfull完成签到,获得积分10
1秒前
1秒前
湘湘完成签到,获得积分10
2秒前
南音发布了新的文献求助10
3秒前
oavana完成签到,获得积分20
3秒前
学术小子完成签到,获得积分10
3秒前
xixi应助张奕冰采纳,获得10
3秒前
Small-violet发布了新的文献求助10
3秒前
啦啦啦完成签到,获得积分10
4秒前
阳佟听荷完成签到,获得积分10
4秒前
5秒前
5秒前
orixero应助画风湖湘卷采纳,获得10
5秒前
DHY完成签到,获得积分10
7秒前
wpx完成签到,获得积分20
7秒前
蜡笔小小鸿完成签到,获得积分20
8秒前
8秒前
消消消消气完成签到 ,获得积分10
8秒前
隐形的妙松完成签到,获得积分10
8秒前
wanci应助蛋挞豆花采纳,获得10
8秒前
DDTT完成签到,获得积分10
9秒前
lsy完成签到,获得积分10
9秒前
啥名都行完成签到,获得积分10
9秒前
10秒前
H.发布了新的文献求助10
10秒前
粉色小妖精完成签到,获得积分10
11秒前
Hannahcx发布了新的文献求助10
11秒前
Yin完成签到 ,获得积分10
11秒前
HCLO完成签到,获得积分10
11秒前
善学以致用应助panpan采纳,获得10
11秒前
12秒前
manfullmoon完成签到,获得积分10
12秒前
12秒前
微垣完成签到,获得积分10
12秒前
sowhat完成签到 ,获得积分10
12秒前
sow完成签到,获得积分10
13秒前
13秒前
小福发布了新的文献求助10
13秒前
无情的聋五完成签到 ,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147351
求助须知:如何正确求助?哪些是违规求助? 2798580
关于积分的说明 7829767
捐赠科研通 2455324
什么是DOI,文献DOI怎么找? 1306666
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567