Dynamic simulation-assisted Gaussian mixture alignment approach for fault diagnosis of rotation machinery under small samples

旋转(数学) 高斯分布 计算机科学 断层(地质) 人工智能 地质学 物理 地震学 量子力学
作者
shubo yu,Zhansheng Liu,Gaorong Zhang,Saibo Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (9): 096106-096106
标识
DOI:10.1088/1361-6501/ad50fb
摘要

Abstract Obtaining a substantial number of actual samples for rotating machinery in an industrial setting can be challenging, particularly when faulty samples are acquired under hazardous working conditions. The issue of insufficient samples hinders the effective training of reliable fault diagnosis models, impeding the industrial implementation of advanced intelligent methods. This study proposes an innovative dynamic simulation-assisted Gaussian mixture alignment model (DSGMA) to address the challenge of applying fault diagnosis technologies, with its performance mined by advanced transfer algorithms. Specifically, we establish a fault dynamics model for rotating machinery and acquire a substantial amount of simulated data as the source domain to facilitate the training of the deep neural network model. Subsequently, we propose a Gaussian mixture-guided domain alignment approach that assigns a domain-independent Gaussian distribution to each category as prior knowledge, with the parameters calculated using limited actual samples. Diagnostic knowledge is transferred from the source domain to the target domain by minimizing the Kullback–Leibler divergence between the features of the simulated samples and the Gaussian mixture priors. Furthermore, the DSGMA model incorporates Gaussian clustering loss to augment the clustering capability of samples belonging to the same category from real devices and enhances the computational stability of the parameters in the Gaussian mixture model. The efficacy of the DSGMA method is validated using three publicly available datasets and compared against five widely adopted methods. The experimental findings illustrate that DSGMA exhibits superior diagnostic and robust capabilities, facilitating efficient fault diagnosis under scenarios of small samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
只如初发布了新的文献求助10
刚刚
SYLH应助斯文火龙果采纳,获得10
刚刚
易安发布了新的文献求助10
刚刚
木桶人plus完成签到 ,获得积分10
刚刚
shino发布了新的文献求助10
1秒前
1秒前
学术z完成签到,获得积分10
2秒前
晓军完成签到,获得积分10
2秒前
研友_rLmNXn完成签到,获得积分10
2秒前
开朗的睫毛膏完成签到,获得积分10
2秒前
2秒前
3秒前
语黛完成签到,获得积分10
3秒前
完美世界应助enen采纳,获得10
3秒前
4秒前
Jean发布了新的文献求助10
4秒前
小羊发布了新的文献求助30
4秒前
4秒前
木质素爱好者完成签到,获得积分10
5秒前
Notdodead应助甜甜的高跟鞋采纳,获得20
5秒前
6秒前
Giroro_roro发布了新的文献求助10
7秒前
7秒前
WQQ完成签到,获得积分10
7秒前
可爱海雪发布了新的文献求助30
7秒前
AL完成签到,获得积分10
8秒前
8秒前
负责水风完成签到,获得积分10
8秒前
jl完成签到 ,获得积分10
8秒前
9秒前
11秒前
tree发布了新的文献求助30
11秒前
李爱国应助Zayne采纳,获得10
11秒前
d1111s完成签到,获得积分10
12秒前
感动水杯完成签到 ,获得积分10
12秒前
12秒前
12秒前
12秒前
小二郎应助负责水风采纳,获得10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650