已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MATR: Multimodal Medical Image Fusion via Multiscale Adaptive Transformer

计算机科学 人工智能 相互信息 特征提取 卷积神经网络 模式识别(心理学) 计算机视觉 机器学习
作者
Wei Tang,Fazhi He,Yü Liu,Yansong Duan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5134-5149 被引量:303
标识
DOI:10.1109/tip.2022.3193288
摘要

Owing to the limitations of imaging sensors, it is challenging to obtain a medical image that simultaneously contains functional metabolic information and structural tissue details. Multimodal medical image fusion, an effective way to merge the complementary information in different modalities, has become a significant technique to facilitate clinical diagnosis and surgical navigation. With powerful feature representation ability, deep learning (DL)-based methods have improved such fusion results but still have not achieved satisfactory performance. Specifically, existing DL-based methods generally depend on convolutional operations, which can well extract local patterns but have limited capability in preserving global context information. To compensate for this defect and achieve accurate fusion, we propose a novel unsupervised method to fuse multimodal medical images via a multiscale adaptive Transformer termed MATR. In the proposed method, instead of directly employing vanilla convolution, we introduce an adaptive convolution for adaptively modulating the convolutional kernel based on the global complementary context. To further model long-range dependencies, an adaptive Transformer is employed to enhance the global semantic extraction capability. Our network architecture is designed in a multiscale fashion so that useful multimodal information can be adequately acquired from the perspective of different scales. Moreover, an objective function composed of a structural loss and a region mutual information loss is devised to construct constraints for information preservation at both the structural-level and the feature-level. Extensive experiments on a mainstream database demonstrate that the proposed method outperforms other representative and state-of-the-art methods in terms of both visual quality and quantitative evaluation. We also extend the proposed method to address other biomedical image fusion issues, and the pleasing fusion results illustrate that MATR has good generalization capability. The code of the proposed method is available at https://github.com/tthinking/MATR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
slr完成签到,获得积分10
1秒前
8秒前
11秒前
瘦瘦的南蕾完成签到 ,获得积分10
12秒前
皮卡丘完成签到 ,获得积分10
15秒前
15秒前
刘佳慧发布了新的文献求助10
15秒前
Dali应助你泽采纳,获得10
15秒前
Lucas应助22采纳,获得10
16秒前
善学以致用应助上上签采纳,获得10
17秒前
bubble完成签到 ,获得积分10
19秒前
20秒前
20秒前
22秒前
24秒前
顺心的星星完成签到,获得积分10
25秒前
26秒前
光热效应发布了新的文献求助10
26秒前
王羊补牢完成签到 ,获得积分10
28秒前
维奈克拉应助麦可采纳,获得20
29秒前
柔之发布了新的文献求助10
30秒前
30秒前
上上签发布了新的文献求助10
31秒前
31秒前
Ava应助白断秋采纳,获得10
32秒前
32秒前
UU完成签到,获得积分20
32秒前
完美世界应助Aurora采纳,获得10
34秒前
平淡凡松完成签到 ,获得积分10
35秒前
27小天使发布了新的文献求助30
35秒前
UU发布了新的文献求助20
36秒前
37秒前
39秒前
打打应助freshman采纳,获得10
41秒前
火星上的如松完成签到,获得积分10
43秒前
李晓萌发布了新的文献求助10
45秒前
Aurora发布了新的文献求助10
45秒前
47秒前
念柏完成签到,获得积分10
48秒前
orixero应助上上签采纳,获得10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573086
求助须知:如何正确求助?哪些是违规求助? 4659218
关于积分的说明 14724003
捐赠科研通 4599058
什么是DOI,文献DOI怎么找? 2524103
邀请新用户注册赠送积分活动 1494642
关于科研通互助平台的介绍 1464679