MATR: Multimodal Medical Image Fusion via Multiscale Adaptive Transformer

计算机科学 人工智能 相互信息 特征提取 卷积神经网络 模式识别(心理学) 计算机视觉 机器学习
作者
Wei Tang,Fazhi He,Yü Liu,Yansong Duan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5134-5149 被引量:201
标识
DOI:10.1109/tip.2022.3193288
摘要

Owing to the limitations of imaging sensors, it is challenging to obtain a medical image that simultaneously contains functional metabolic information and structural tissue details. Multimodal medical image fusion, an effective way to merge the complementary information in different modalities, has become a significant technique to facilitate clinical diagnosis and surgical navigation. With powerful feature representation ability, deep learning (DL)-based methods have improved such fusion results but still have not achieved satisfactory performance. Specifically, existing DL-based methods generally depend on convolutional operations, which can well extract local patterns but have limited capability in preserving global context information. To compensate for this defect and achieve accurate fusion, we propose a novel unsupervised method to fuse multimodal medical images via a multiscale adaptive Transformer termed MATR. In the proposed method, instead of directly employing vanilla convolution, we introduce an adaptive convolution for adaptively modulating the convolutional kernel based on the global complementary context. To further model long-range dependencies, an adaptive Transformer is employed to enhance the global semantic extraction capability. Our network architecture is designed in a multiscale fashion so that useful multimodal information can be adequately acquired from the perspective of different scales. Moreover, an objective function composed of a structural loss and a region mutual information loss is devised to construct constraints for information preservation at both the structural-level and the feature-level. Extensive experiments on a mainstream database demonstrate that the proposed method outperforms other representative and state-of-the-art methods in terms of both visual quality and quantitative evaluation. We also extend the proposed method to address other biomedical image fusion issues, and the pleasing fusion results illustrate that MATR has good generalization capability. The code of the proposed method is available at https://github.com/tthinking/MATR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
99完成签到,获得积分10
刚刚
lida完成签到,获得积分10
1秒前
个性盼易发布了新的文献求助10
1秒前
2秒前
搜集达人应助瑞瑞采纳,获得10
2秒前
呼呼发布了新的文献求助10
3秒前
3秒前
4秒前
叶祥发布了新的文献求助10
5秒前
在水一方应助橙子采纳,获得10
6秒前
7秒前
传奇3应助风清扬采纳,获得10
8秒前
9秒前
9秒前
云淡风轻发布了新的文献求助10
9秒前
哈哈完成签到 ,获得积分10
9秒前
dypdyp应助hkh采纳,获得10
10秒前
科目三应助hkh采纳,获得10
10秒前
隐形曼青应助hkh采纳,获得10
10秒前
叶祥完成签到,获得积分10
10秒前
李爱国应助hkh采纳,获得10
10秒前
11秒前
QWEN完成签到,获得积分10
11秒前
小杨发布了新的文献求助10
11秒前
orixero应助大劲采纳,获得10
12秒前
14秒前
LMY关闭了LMY文献求助
14秒前
Lyra发布了新的文献求助10
15秒前
Song0558完成签到 ,获得积分20
15秒前
15秒前
Wmhuahuaood发布了新的文献求助30
15秒前
16秒前
Bab完成签到,获得积分10
16秒前
虚幻沛菡发布了新的文献求助10
18秒前
星辰大海应助ouiiiblue采纳,获得10
18秒前
李静霆发布了新的文献求助30
18秒前
共享精神应助lorentzh采纳,获得10
18秒前
能干雁凡发布了新的文献求助10
18秒前
桐桐应助854fycchjh采纳,获得50
20秒前
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344