MATR: Multimodal Medical Image Fusion via Multiscale Adaptive Transformer

计算机科学 人工智能 相互信息 特征提取 卷积神经网络 模式识别(心理学) 计算机视觉 机器学习
作者
Wei Tang,Fazhi He,Yü Liu,Yansong Duan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5134-5149 被引量:296
标识
DOI:10.1109/tip.2022.3193288
摘要

Owing to the limitations of imaging sensors, it is challenging to obtain a medical image that simultaneously contains functional metabolic information and structural tissue details. Multimodal medical image fusion, an effective way to merge the complementary information in different modalities, has become a significant technique to facilitate clinical diagnosis and surgical navigation. With powerful feature representation ability, deep learning (DL)-based methods have improved such fusion results but still have not achieved satisfactory performance. Specifically, existing DL-based methods generally depend on convolutional operations, which can well extract local patterns but have limited capability in preserving global context information. To compensate for this defect and achieve accurate fusion, we propose a novel unsupervised method to fuse multimodal medical images via a multiscale adaptive Transformer termed MATR. In the proposed method, instead of directly employing vanilla convolution, we introduce an adaptive convolution for adaptively modulating the convolutional kernel based on the global complementary context. To further model long-range dependencies, an adaptive Transformer is employed to enhance the global semantic extraction capability. Our network architecture is designed in a multiscale fashion so that useful multimodal information can be adequately acquired from the perspective of different scales. Moreover, an objective function composed of a structural loss and a region mutual information loss is devised to construct constraints for information preservation at both the structural-level and the feature-level. Extensive experiments on a mainstream database demonstrate that the proposed method outperforms other representative and state-of-the-art methods in terms of both visual quality and quantitative evaluation. We also extend the proposed method to address other biomedical image fusion issues, and the pleasing fusion results illustrate that MATR has good generalization capability. The code of the proposed method is available at https://github.com/tthinking/MATR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Witness发布了新的文献求助10
1秒前
slycmd完成签到,获得积分10
1秒前
今后应助李天王采纳,获得20
1秒前
美好的冰蓝完成签到 ,获得积分10
2秒前
领导范儿应助酷炫小笼包采纳,获得10
2秒前
溪山果林完成签到,获得积分10
5秒前
天真的夜山完成签到,获得积分10
6秒前
哈哈尼完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
11秒前
zicong应助博姐37采纳,获得10
11秒前
13秒前
14秒前
赘婿应助xu采纳,获得10
15秒前
shd发布了新的文献求助10
16秒前
yznfly应助机灵柚子采纳,获得200
17秒前
科研通AI2S应助QinCaibin采纳,获得10
17秒前
18秒前
bkagyin应助wenchong采纳,获得10
19秒前
xueshu666发布了新的文献求助10
20秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
万能图书馆应助橙橙采纳,获得10
23秒前
xx完成签到,获得积分10
23秒前
23秒前
24秒前
听宇完成签到,获得积分20
25秒前
科研通AI6应助闪闪凝冬采纳,获得10
25秒前
xcxcc发布了新的文献求助10
26秒前
orixero应助火星上含芙采纳,获得10
26秒前
周周发布了新的文献求助50
26秒前
张娇发布了新的文献求助10
28秒前
坚强煜城发布了新的文献求助10
28秒前
邓佳鑫Alan应助邵锴采纳,获得10
28秒前
29秒前
cjy完成签到,获得积分10
29秒前
cc发布了新的文献求助10
30秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449198
求助须知:如何正确求助?哪些是违规求助? 4557419
关于积分的说明 14263155
捐赠科研通 4480370
什么是DOI,文献DOI怎么找? 2454462
邀请新用户注册赠送积分活动 1445133
关于科研通互助平台的介绍 1420965