MATR: Multimodal Medical Image Fusion via Multiscale Adaptive Transformer

计算机科学 人工智能 相互信息 特征提取 卷积神经网络 模式识别(心理学) 计算机视觉 机器学习
作者
Wei Tang,Fazhi He,Yü Liu,Yansong Duan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5134-5149 被引量:303
标识
DOI:10.1109/tip.2022.3193288
摘要

Owing to the limitations of imaging sensors, it is challenging to obtain a medical image that simultaneously contains functional metabolic information and structural tissue details. Multimodal medical image fusion, an effective way to merge the complementary information in different modalities, has become a significant technique to facilitate clinical diagnosis and surgical navigation. With powerful feature representation ability, deep learning (DL)-based methods have improved such fusion results but still have not achieved satisfactory performance. Specifically, existing DL-based methods generally depend on convolutional operations, which can well extract local patterns but have limited capability in preserving global context information. To compensate for this defect and achieve accurate fusion, we propose a novel unsupervised method to fuse multimodal medical images via a multiscale adaptive Transformer termed MATR. In the proposed method, instead of directly employing vanilla convolution, we introduce an adaptive convolution for adaptively modulating the convolutional kernel based on the global complementary context. To further model long-range dependencies, an adaptive Transformer is employed to enhance the global semantic extraction capability. Our network architecture is designed in a multiscale fashion so that useful multimodal information can be adequately acquired from the perspective of different scales. Moreover, an objective function composed of a structural loss and a region mutual information loss is devised to construct constraints for information preservation at both the structural-level and the feature-level. Extensive experiments on a mainstream database demonstrate that the proposed method outperforms other representative and state-of-the-art methods in terms of both visual quality and quantitative evaluation. We also extend the proposed method to address other biomedical image fusion issues, and the pleasing fusion results illustrate that MATR has good generalization capability. The code of the proposed method is available at https://github.com/tthinking/MATR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456发布了新的文献求助10
刚刚
1秒前
1秒前
tlggg发布了新的文献求助10
1秒前
2秒前
月月发布了新的文献求助10
3秒前
3秒前
古风完成签到 ,获得积分10
4秒前
4秒前
yznfly应助孙宇采纳,获得20
4秒前
4秒前
长策硕贤发布了新的文献求助10
5秒前
酷酷紫易发布了新的文献求助10
5秒前
猫の傲娇完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
能干豆芽发布了新的文献求助10
7秒前
zzz发布了新的文献求助10
8秒前
武雨寒发布了新的文献求助10
8秒前
顾矜应助gkq采纳,获得10
9秒前
sssss9999完成签到 ,获得积分20
9秒前
cz完成签到,获得积分10
9秒前
热心青易发布了新的文献求助10
10秒前
坚强香旋发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
LIU完成签到 ,获得积分10
11秒前
12秒前
14秒前
能干豆芽完成签到,获得积分10
14秒前
血橙发布了新的文献求助10
14秒前
充电宝应助求索的舰菌采纳,获得10
14秒前
李海乐发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
16秒前
汉堡包应助小二采纳,获得10
16秒前
小关完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675794
求助须知:如何正确求助?哪些是违规求助? 4949173
关于积分的说明 15154796
捐赠科研通 4835088
什么是DOI,文献DOI怎么找? 2589854
邀请新用户注册赠送积分活动 1543583
关于科研通互助平台的介绍 1501336