MATR: Multimodal Medical Image Fusion via Multiscale Adaptive Transformer

计算机科学 人工智能 相互信息 特征提取 卷积神经网络 模式识别(心理学) 计算机视觉 机器学习
作者
Wei Tang,Fazhi He,Yü Liu,Yansong Duan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5134-5149 被引量:238
标识
DOI:10.1109/tip.2022.3193288
摘要

Owing to the limitations of imaging sensors, it is challenging to obtain a medical image that simultaneously contains functional metabolic information and structural tissue details. Multimodal medical image fusion, an effective way to merge the complementary information in different modalities, has become a significant technique to facilitate clinical diagnosis and surgical navigation. With powerful feature representation ability, deep learning (DL)-based methods have improved such fusion results but still have not achieved satisfactory performance. Specifically, existing DL-based methods generally depend on convolutional operations, which can well extract local patterns but have limited capability in preserving global context information. To compensate for this defect and achieve accurate fusion, we propose a novel unsupervised method to fuse multimodal medical images via a multiscale adaptive Transformer termed MATR. In the proposed method, instead of directly employing vanilla convolution, we introduce an adaptive convolution for adaptively modulating the convolutional kernel based on the global complementary context. To further model long-range dependencies, an adaptive Transformer is employed to enhance the global semantic extraction capability. Our network architecture is designed in a multiscale fashion so that useful multimodal information can be adequately acquired from the perspective of different scales. Moreover, an objective function composed of a structural loss and a region mutual information loss is devised to construct constraints for information preservation at both the structural-level and the feature-level. Extensive experiments on a mainstream database demonstrate that the proposed method outperforms other representative and state-of-the-art methods in terms of both visual quality and quantitative evaluation. We also extend the proposed method to address other biomedical image fusion issues, and the pleasing fusion results illustrate that MATR has good generalization capability. The code of the proposed method is available at https://github.com/tthinking/MATR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕苡完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
2秒前
3秒前
jason0023发布了新的文献求助30
3秒前
WJJ完成签到,获得积分10
4秒前
4秒前
科研鶸发布了新的文献求助10
4秒前
芋圆完成签到,获得积分10
4秒前
无为发布了新的文献求助10
5秒前
yfjia发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
豆兜兜完成签到,获得积分10
6秒前
6秒前
司纤户羽发布了新的文献求助20
7秒前
yu发布了新的文献求助10
7秒前
8秒前
刘乐源完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
8秒前
orixero应助999采纳,获得30
8秒前
9秒前
10秒前
所所应助Yue采纳,获得10
10秒前
刘乐源发布了新的文献求助10
11秒前
weddcf发布了新的文献求助10
11秒前
111发布了新的文献求助10
12秒前
诚心的月饼完成签到,获得积分10
12秒前
豆兜兜发布了新的文献求助10
13秒前
13秒前
14秒前
wanci应助Dorapt采纳,获得10
15秒前
大模型应助达布溜采纳,获得10
16秒前
深情安青应助辛勤的囧采纳,获得10
16秒前
16秒前
17秒前
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114261
求助须知:如何正确求助?哪些是违规求助? 4321522
关于积分的说明 13465873
捐赠科研通 4153177
什么是DOI,文献DOI怎么找? 2275669
邀请新用户注册赠送积分活动 1277666
关于科研通互助平台的介绍 1215632