MATR: Multimodal Medical Image Fusion via Multiscale Adaptive Transformer

计算机科学 人工智能 相互信息 特征提取 卷积神经网络 模式识别(心理学) 计算机视觉 机器学习
作者
Wei Tang,Fazhi He,Yü Liu,Yansong Duan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5134-5149 被引量:165
标识
DOI:10.1109/tip.2022.3193288
摘要

Owing to the limitations of imaging sensors, it is challenging to obtain a medical image that simultaneously contains functional metabolic information and structural tissue details. Multimodal medical image fusion, an effective way to merge the complementary information in different modalities, has become a significant technique to facilitate clinical diagnosis and surgical navigation. With powerful feature representation ability, deep learning (DL)-based methods have improved such fusion results but still have not achieved satisfactory performance. Specifically, existing DL-based methods generally depend on convolutional operations, which can well extract local patterns but have limited capability in preserving global context information. To compensate for this defect and achieve accurate fusion, we propose a novel unsupervised method to fuse multimodal medical images via a multiscale adaptive Transformer termed MATR. In the proposed method, instead of directly employing vanilla convolution, we introduce an adaptive convolution for adaptively modulating the convolutional kernel based on the global complementary context. To further model long-range dependencies, an adaptive Transformer is employed to enhance the global semantic extraction capability. Our network architecture is designed in a multiscale fashion so that useful multimodal information can be adequately acquired from the perspective of different scales. Moreover, an objective function composed of a structural loss and a region mutual information loss is devised to construct constraints for information preservation at both the structural-level and the feature-level. Extensive experiments on a mainstream database demonstrate that the proposed method outperforms other representative and state-of-the-art methods in terms of both visual quality and quantitative evaluation. We also extend the proposed method to address other biomedical image fusion issues, and the pleasing fusion results illustrate that MATR has good generalization capability. The code of the proposed method is available at https://github.com/tthinking/MATR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miao发布了新的文献求助10
1秒前
L.G.Y完成签到 ,获得积分10
1秒前
1秒前
orixero应助TGU的小马同学采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
生动的鹰完成签到,获得积分10
2秒前
脑洞疼应助流光采纳,获得10
3秒前
谬伤完成签到 ,获得积分10
3秒前
hb发布了新的文献求助10
3秒前
酷波er应助Yang采纳,获得10
4秒前
5秒前
栗子完成签到,获得积分10
5秒前
复杂的洋葱完成签到 ,获得积分10
5秒前
徐冉完成签到,获得积分10
5秒前
xinyuY完成签到,获得积分10
5秒前
xlh完成签到 ,获得积分10
5秒前
Rjy发布了新的文献求助10
6秒前
ACEmeng完成签到 ,获得积分10
7秒前
7秒前
save发布了新的文献求助10
8秒前
Eureka完成签到,获得积分10
8秒前
研友_VZG7GZ应助千里采纳,获得10
8秒前
andrewyu发布了新的文献求助10
9秒前
动听芷完成签到 ,获得积分10
9秒前
小紫发布了新的文献求助100
9秒前
9秒前
自然的李完成签到 ,获得积分10
9秒前
马霄鑫发布了新的文献求助10
11秒前
LF发布了新的文献求助10
11秒前
邵绝山完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
积极的尔竹完成签到,获得积分10
11秒前
打打应助pp1230采纳,获得10
12秒前
xingkongdan完成签到 ,获得积分10
12秒前
小甘看世界完成签到,获得积分10
13秒前
minhduc发布了新的文献求助10
14秒前
14秒前
科研通AI5应助小元采纳,获得10
15秒前
共享精神应助星星星采纳,获得10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771