Brachytherapy outcome modeling in cervical cancer patients: A predictive machine learning study on patient-specific clinical, physical and dosimetric parameters

医学 近距离放射治疗 接收机工作特性 逻辑回归 随机森林 支持向量机 机器学习 置信区间 宫颈癌 曲线下面积 核医学 人工智能 放射治疗 放射科 癌症 内科学 计算机科学
作者
Neda Abdalvand,Mahdi Sadeghi,Seied Rabi Mahdavi,Hamid Abdollahi,Younes Qasempour,Fatemeh Mohammadian,Mohammad Javad Tahmasebi Birgani,Khadijeh Hosseini
出处
期刊:Brachytherapy [Elsevier]
卷期号:21 (6): 769-782 被引量:6
标识
DOI:10.1016/j.brachy.2022.06.007
摘要

To predict clinical response in locally advanced cervical cancer (LACC) patients by a combination of measures, including clinical and brachytherapy parameters and several machine learning (ML) approaches.Brachytherapy features such as insertion approaches, source metrics, dosimetric, and clinical measures were used for modeling. Four different ML approaches, including LASSO, Ridge, support vector machine (SVM), and Random Forest (RF), were applied to extracted measures for model development alone or in combination. Model performance was evaluated using the area under the curve (AUC) of receiver operating characteristics curve, sensitivity, specificity, and accuracy. Our results were compared with a reference model developed by simple logistic regression applied to three distinct clinical features identified by previous papers.One hundred eleven LACC patients were included. Nine data sets were obtained based on the features, and 36 predictive models were built. In terms of AUC, the model developed using RF applied to dosimetric, physical, and total BT sessions features were found as the most predictive [AUC; 0.82 (0.95 confidence interval (CI); 0.79 -0.93), sensitivity; 0.79, specificity; 0.76, and accuracy; 0.77]. The AUC (0.95 CI), sensitivity, specificity, and accuracy for the reference model were found as 0.56 (0.52 ...0.68), 0.51, 0.51, and 0.48, respectively. Most RF models had significantly better performance than the reference model (Bonferroni corrected p-value < 0.0014).Brachytherapy response can be predicted using dosimetric and physical parameters extracted from treatment parameters. Machine learning algorithms, including Random Forest, could play a critical role in such predictive modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包代桃发布了新的文献求助10
刚刚
qwt发布了新的文献求助10
1秒前
二玥完成签到,获得积分20
1秒前
wx完成签到,获得积分10
1秒前
跳跃尔琴发布了新的文献求助10
2秒前
Dsunflower完成签到 ,获得积分10
5秒前
wanci应助Hcr采纳,获得30
6秒前
6秒前
7秒前
qwt完成签到,获得积分20
8秒前
Tohka完成签到 ,获得积分10
8秒前
9秒前
Bminor完成签到,获得积分10
9秒前
怡萱发布了新的文献求助10
9秒前
9秒前
miaomiao发布了新的文献求助10
10秒前
包代桃完成签到,获得积分20
10秒前
月成发布了新的文献求助10
11秒前
13秒前
yang完成签到,获得积分10
13秒前
毛毛发布了新的文献求助50
14秒前
15秒前
小蘑菇应助青松采纳,获得10
16秒前
17秒前
17秒前
18秒前
Hcr完成签到,获得积分20
18秒前
Zz完成签到 ,获得积分10
18秒前
跳跃尔琴发布了新的文献求助10
18秒前
19秒前
21秒前
笑点低的小天鹅完成签到 ,获得积分10
21秒前
炙热若云完成签到,获得积分10
21秒前
22秒前
King完成签到,获得积分10
23秒前
JamesPei应助西扬采纳,获得20
23秒前
李虎完成签到 ,获得积分10
23秒前
ddwdwdwdddw发布了新的文献求助10
23秒前
木子李发布了新的文献求助10
24秒前
懒洋洋tzy发布了新的文献求助10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143628
求助须知:如何正确求助?哪些是违规求助? 2795064
关于积分的说明 7813166
捐赠科研通 2451128
什么是DOI,文献DOI怎么找? 1304317
科研通“疑难数据库(出版商)”最低求助积分说明 627213
版权声明 601393