清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Brachytherapy outcome modeling in cervical cancer patients: A predictive machine learning study on patient-specific clinical, physical and dosimetric parameters

医学 近距离放射治疗 接收机工作特性 逻辑回归 随机森林 支持向量机 机器学习 置信区间 宫颈癌 曲线下面积 核医学 人工智能 放射治疗 放射科 癌症 内科学 计算机科学
作者
Neda Abdalvand,Mahdi Sadeghi,Seied Rabi Mahdavi,Hamid Abdollahi,Younes Qasempour,Fatemeh Mohammadian,Mohammad Javad Tahmasebi Birgani,Khadijeh Hosseini
出处
期刊:Brachytherapy [Elsevier]
卷期号:21 (6): 769-782 被引量:6
标识
DOI:10.1016/j.brachy.2022.06.007
摘要

To predict clinical response in locally advanced cervical cancer (LACC) patients by a combination of measures, including clinical and brachytherapy parameters and several machine learning (ML) approaches.Brachytherapy features such as insertion approaches, source metrics, dosimetric, and clinical measures were used for modeling. Four different ML approaches, including LASSO, Ridge, support vector machine (SVM), and Random Forest (RF), were applied to extracted measures for model development alone or in combination. Model performance was evaluated using the area under the curve (AUC) of receiver operating characteristics curve, sensitivity, specificity, and accuracy. Our results were compared with a reference model developed by simple logistic regression applied to three distinct clinical features identified by previous papers.One hundred eleven LACC patients were included. Nine data sets were obtained based on the features, and 36 predictive models were built. In terms of AUC, the model developed using RF applied to dosimetric, physical, and total BT sessions features were found as the most predictive [AUC; 0.82 (0.95 confidence interval (CI); 0.79 -0.93), sensitivity; 0.79, specificity; 0.76, and accuracy; 0.77]. The AUC (0.95 CI), sensitivity, specificity, and accuracy for the reference model were found as 0.56 (0.52 ...0.68), 0.51, 0.51, and 0.48, respectively. Most RF models had significantly better performance than the reference model (Bonferroni corrected p-value < 0.0014).Brachytherapy response can be predicted using dosimetric and physical parameters extracted from treatment parameters. Machine learning algorithms, including Random Forest, could play a critical role in such predictive modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weihe完成签到,获得积分10
8秒前
11秒前
slzhao发布了新的文献求助10
15秒前
笔墨纸砚完成签到 ,获得积分10
20秒前
36秒前
酷酷小子完成签到 ,获得积分0
53秒前
文献完成签到 ,获得积分10
59秒前
1分钟前
萌大叔发布了新的文献求助10
1分钟前
培培完成签到 ,获得积分10
1分钟前
末末完成签到 ,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
upupup完成签到 ,获得积分10
1分钟前
慧子完成签到,获得积分10
1分钟前
2分钟前
2分钟前
MOREMO完成签到,获得积分10
2分钟前
laoli2022完成签到,获得积分10
2分钟前
一见憘完成签到 ,获得积分10
2分钟前
3分钟前
JESSE发布了新的文献求助10
3分钟前
孟寐以求完成签到 ,获得积分10
3分钟前
fabea完成签到,获得积分10
3分钟前
江三村完成签到 ,获得积分0
3分钟前
3分钟前
Arvin发布了新的文献求助10
3分钟前
3分钟前
萧萧完成签到,获得积分10
3分钟前
3分钟前
crystaler完成签到 ,获得积分10
4分钟前
Arvin完成签到,获得积分10
4分钟前
4分钟前
samuel发布了新的文献求助10
4分钟前
1中蓝完成签到 ,获得积分10
4分钟前
4分钟前
大医仁心完成签到 ,获得积分10
4分钟前
儒雅黑裤完成签到 ,获得积分10
4分钟前
df完成签到 ,获得积分10
4分钟前
samuel完成签到,获得积分10
4分钟前
q792309106发布了新的文献求助10
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211911
求助须知:如何正确求助?哪些是违规求助? 4388251
关于积分的说明 13663692
捐赠科研通 4248578
什么是DOI,文献DOI怎么找? 2331051
邀请新用户注册赠送积分活动 1328776
关于科研通互助平台的介绍 1281955