Brachytherapy outcome modeling in cervical cancer patients: A predictive machine learning study on patient-specific clinical, physical and dosimetric parameters

医学 近距离放射治疗 接收机工作特性 逻辑回归 随机森林 支持向量机 机器学习 置信区间 宫颈癌 曲线下面积 核医学 人工智能 放射治疗 放射科 癌症 内科学 计算机科学
作者
Neda Abdalvand,Mahdi Sadeghi,Seied Rabi Mahdavi,Hamid Abdollahi,Younes Qasempour,Fatemeh Mohammadian,Mohammad Javad Tahmasebi Birgani,Khadijeh Hosseini
出处
期刊:Brachytherapy [Elsevier BV]
卷期号:21 (6): 769-782 被引量:6
标识
DOI:10.1016/j.brachy.2022.06.007
摘要

To predict clinical response in locally advanced cervical cancer (LACC) patients by a combination of measures, including clinical and brachytherapy parameters and several machine learning (ML) approaches.Brachytherapy features such as insertion approaches, source metrics, dosimetric, and clinical measures were used for modeling. Four different ML approaches, including LASSO, Ridge, support vector machine (SVM), and Random Forest (RF), were applied to extracted measures for model development alone or in combination. Model performance was evaluated using the area under the curve (AUC) of receiver operating characteristics curve, sensitivity, specificity, and accuracy. Our results were compared with a reference model developed by simple logistic regression applied to three distinct clinical features identified by previous papers.One hundred eleven LACC patients were included. Nine data sets were obtained based on the features, and 36 predictive models were built. In terms of AUC, the model developed using RF applied to dosimetric, physical, and total BT sessions features were found as the most predictive [AUC; 0.82 (0.95 confidence interval (CI); 0.79 -0.93), sensitivity; 0.79, specificity; 0.76, and accuracy; 0.77]. The AUC (0.95 CI), sensitivity, specificity, and accuracy for the reference model were found as 0.56 (0.52 ...0.68), 0.51, 0.51, and 0.48, respectively. Most RF models had significantly better performance than the reference model (Bonferroni corrected p-value < 0.0014).Brachytherapy response can be predicted using dosimetric and physical parameters extracted from treatment parameters. Machine learning algorithms, including Random Forest, could play a critical role in such predictive modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新新新子完成签到,获得积分10
2秒前
2秒前
2秒前
手帕很忙完成签到,获得积分10
4秒前
秋半梦完成签到,获得积分10
5秒前
7秒前
7秒前
安诺完成签到,获得积分10
8秒前
yysghr发布了新的文献求助10
9秒前
Chaiyuan完成签到 ,获得积分10
9秒前
10秒前
竹桃完成签到 ,获得积分10
11秒前
peri7完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
吉以寒完成签到,获得积分10
15秒前
16秒前
li发布了新的文献求助10
16秒前
坚强谷槐发布了新的文献求助10
17秒前
翟炳发布了新的文献求助10
18秒前
19秒前
单薄紫菜完成签到,获得积分10
19秒前
20秒前
kl完成签到 ,获得积分10
20秒前
小龙发布了新的文献求助10
21秒前
SASI完成签到 ,获得积分10
28秒前
翟炳完成签到,获得积分10
29秒前
lss完成签到,获得积分10
30秒前
Hello应助bing采纳,获得10
31秒前
31秒前
JamesPei应助yysghr采纳,获得10
32秒前
Ava应助waikeyan采纳,获得10
32秒前
run发布了新的文献求助10
33秒前
33秒前
默默安双完成签到 ,获得积分10
35秒前
所所应助阳阳阳采纳,获得10
36秒前
高美美发布了新的文献求助10
37秒前
38秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150