材料科学
四次方程
剪切(地质)
本构方程
航程(航空)
结构工程
生物医学工程
机械
计算机科学
复合材料
工程类
数学
物理
有限元法
纯数学
作者
Wei Sun,Michael S. Sacks,Tiffany L. Sellaro,William S. Slaughter,Michael J. Scott
出处
期刊:Journal of biomechanical engineering
[ASME International]
日期:2003-06-01
卷期号:125 (3): 372-380
被引量:99
摘要
Utilization of novel biologically-derived biomaterials in bioprosthetic heart valves (BHV) requires robust constitutive models to predict the mechanical behavior under generalized loading states. Thus, it is necessary to perform rigorous experimentation involving all functional deformations to obtain both the form and material constants of a strain-energy density function. In this study, we generated a comprehensive experimental biaxial mechanical dataset that included high in-plane shear stresses using glutaraldehyde treated bovine pericardium (GLBP) as the representative BHV biomaterial. Compared to our previous study (Sacks, JBME, v.121, pp. 551-555, 1999), GLBP demonstrated a substantially different response under high shear strains. This finding was underscored by the inability of the standard Fung model, applied successfully in our previous GLBP study, to fit the high-shear data. To develop an appropriate constitutive model, we utilized an interpolation technique for the pseudo-elastic response to guide modification of the final model form. An eight parameter modified Fung model utilizing additional quartic terms was developed, which fitted the complete dataset well. Model parameters were also constrained to satisfy physical plausibility of the strain energy function. The results of this study underscore the limited predictive ability of current soft tissue models, and the need to collect experimental data for soft tissue simulations over the complete functional range.
科研通智能强力驱动
Strongly Powered by AbleSci AI