A Novel Approach to Multiple Sequence Alignment Using Multiobjective Evolutionary Algorithm Based on Decomposition

多序列比对 初始化 计算机科学 水准点(测量) 进化算法 算法 序列比对 钥匙(锁) 系统发育树 多目标优化 进化计算 人工智能 序列(生物学) 突变 数据挖掘 机器学习 生物 生物化学 遗传学 大地测量学 基因 肽序列 程序设计语言 地理 计算机安全
作者
Huazheng Zhu,Zhongshi He,Yuanyuan Jia
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 717-727 被引量:37
标识
DOI:10.1109/jbhi.2015.2403397
摘要

Multiple sequence alignment (MSA) is a fundamental and key step for implementing other tasks in bioinformatics, such as phylogenetic analyses, identification of conserved motifs and domains, structure prediction, etc. Despite the fact that there are many methods to implement MSA, biologically perfect alignment approaches are not found hitherto. This paper proposes a novel idea to perform MSA, where MSA is treated as a multiobjective optimization problem. A famous multiobjective evolutionary algorithm framework based on decomposition is applied for solving MSA, named MOMSA. In the MOMSA algorithm, we develop a new population initialization method and a novel mutation operator. We compare the performance of MOMSA with several alignment methods based on evolutionary algorithms, including VDGA, GAPAM, and IMSA, and also with state-of-the-art progressive alignment approaches, such as MSAprobs, Probalign, MAFFT, Procons, Clustal omega, T-Coffee, Kalign2, MUSCLE, FSA, Dialign, PRANK, and CLUSTALW. These alignment algorithms are tested on benchmark datasets BAliBASE 2.0 and BAliBASE 3.0. Experimental results show that MOMSA can obtain the significantly better alignments than VDGA, GAPAM on the most of test cases by statistical analyses, produce better alignments than IMSA in terms of TC scores, and also indicate that MOMSA is comparable with the leading progressive alignment approaches in terms of quality of alignments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张医生完成签到,获得积分10
刚刚
刚刚
大模型应助万刈采纳,获得10
1秒前
打打应助wu采纳,获得50
1秒前
1秒前
王雨晴发布了新的文献求助10
4秒前
4秒前
6秒前
cctv18应助dongxia1314采纳,获得10
6秒前
饱饱完成签到,获得积分10
6秒前
7秒前
小二郎应助天真亦云采纳,获得10
8秒前
科研通AI2S应助cctv18采纳,获得10
8秒前
8秒前
xiaoxiaozhu完成签到,获得积分10
9秒前
10秒前
zwq发布了新的文献求助10
10秒前
wzzz发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
调研昵称发布了新的文献求助10
11秒前
Marita发布了新的文献求助10
11秒前
germini99发布了新的文献求助10
11秒前
cctv18给panda的求助进行了留言
12秒前
卡多克完成签到,获得积分10
12秒前
大鹏发布了新的文献求助20
13秒前
可爱的函函应助wzzz采纳,获得10
13秒前
我是老大应助温度采纳,获得10
13秒前
14秒前
14秒前
15秒前
lzs完成签到,获得积分10
16秒前
黑冰台的白甲士完成签到,获得积分10
17秒前
cctv18应助小木匠采纳,获得10
17秒前
kuaijack发布了新的文献求助10
17秒前
李健的小迷弟应助彭凯采纳,获得10
18秒前
共享精神应助xiaoxiaozhu采纳,获得10
18秒前
19秒前
科研通AI2S应助bofu采纳,获得10
19秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3054545
求助须知:如何正确求助?哪些是违规求助? 2711512
关于积分的说明 7426610
捐赠科研通 2356104
什么是DOI,文献DOI怎么找? 1247642
科研通“疑难数据库(出版商)”最低求助积分说明 606478
版权声明 596079