材料科学
有机太阳能电池
接受者
光伏
异质结
密度泛函理论
离解(化学)
光电子学
激子
有机半导体
化学物理
光伏系统
纳米技术
聚合物
计算化学
化学
物理化学
物理
复合材料
生物
量子力学
凝聚态物理
生态学
作者
Theanne Schiros,Gregor Kladnik,Deborah Prezzi,Andrea Ferretti,Giorgia Olivieri,Albano Cossaro,Luca Floreano,Alberto Verdini,Christine L. Schenck,Marshall Cox,Alon A. Gorodetsky,Kyle N. Plunkett,Dean M. DeLongchamp,Colin Nuckolls,Alberto Morgante,D. Cvetko,Ioannis Kymissis
标识
DOI:10.1002/aenm.201201125
摘要
Abstract While the demonstrated power conversion efficiency of organic photovoltaics (OPVs) now exceeds 10%, new design rules are required to tailor interfaces at the molecular level for optimal exciton dissociation and charge transport in higher efficiency devices. We show that molecular shape‐complementarity between donors and acceptors can drive performance in OPV devices. Using core hole clock (CHC) X‐ray spectroscopy and density functional theory (DFT), we compare the electronic coupling, assembly, and charge transfer rates at the interface between C 60 acceptors and flat‐ or contorted‐hexabenzocorone (HBC) donors. The HBC donors have similar optoelectronic properties but differ in molecular contortion and shape matching to the fullerene acceptors. We show that shape‐complementarity drives self‐assembly of an intermixed morphology with a donor/acceptor (D/A) ball‐and‐socket interface, which enables faster electron transfer from HBC to C 60 . The supramolecular assembly and faster electron transfer rates in the shape complementary heterojunction lead to a larger active volume and enhanced exciton dissociation rate. This work provides fundamental mechanistic insights on the improved efficiency of organic photovoltaic devices that incorporate these concave/convex D/A materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI