已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Validation of early risk-prediction models for gestational diabetes based on clinical characteristics

医学 妊娠期糖尿病 体质指数 接收机工作特性 怀孕 队列 糖尿病 人口 产科 队列研究 病历 内科学 妊娠期 内分泌学 遗传学 环境卫生 生物
作者
Sébastien Thériault,Jean‐Claude Forest,Jacques Massé,Yves Giguère
出处
期刊:Diabetes Research and Clinical Practice [Elsevier BV]
卷期号:103 (3): 419-425 被引量:36
标识
DOI:10.1016/j.diabres.2013.12.009
摘要

Aims Gestational diabetes (GDM) is generally diagnosed late in pregnancy, precluding early preventive interventions. This study aims to validate, in a large Caucasian population of pregnant women, models based on clinical characteristics proposed in the literature to identify, early in pregnancy, those at high risk of developing GDM in order to facilitate follow up and prevention. Methods This is a cohort study including 7929 pregnant women recruited prospectively at their first prenatal visit. Clinical information was obtained by a self-administered questionnaire and extraction of data from the medical records. The performance of four proposed clinical risk-prediction models was evaluated for identifying women who developed GDM and those who required insulin therapy. Results The four models yielded areas under the receiver operating characteristic curve (AUC) between 0.668 and 0.756 for the identification of women who developed GDM, a performance similar to those obtained in the original studies. The best performing model, based on ethnicity, body-mass index, family history of diabetes and past history of GDM, resulted in sensitivity, specificity and AUC of 73% (66–79), 81% (80–82) and 0.824 (0.793–0.855), respectively, for the identification of GDM cases requiring insulin therapy. Conclusions External validation of four risk-prediction models based exclusively on clinical characteristics yielded a performance similar to those observed in the original studies. In our cohort, the strategy seems particularly promising for the early prediction of GDM requiring insulin therapy. Addition of recently proposed biochemical markers to such models has the potential to reach a performance justifying clinical utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Hello应助ink采纳,获得30
1秒前
呼延半邪完成签到 ,获得积分10
1秒前
深情安青应助群群采纳,获得10
2秒前
紧张的皮皮虾完成签到,获得积分20
2秒前
无聊的慕凝完成签到,获得积分10
3秒前
高屋建瓴完成签到,获得积分10
4秒前
无情听南完成签到,获得积分10
5秒前
6秒前
123发布了新的文献求助10
7秒前
张嘉雯完成签到 ,获得积分10
8秒前
刘丰铭完成签到,获得积分10
8秒前
卑微学术人完成签到 ,获得积分10
9秒前
wwwyyy完成签到 ,获得积分10
9秒前
Zeno完成签到 ,获得积分10
10秒前
劉浏琉完成签到,获得积分10
10秒前
11秒前
123完成签到,获得积分10
16秒前
sweet雪儿妞妞完成签到 ,获得积分10
18秒前
zy完成签到 ,获得积分10
19秒前
haha发布了新的文献求助10
20秒前
昆工完成签到 ,获得积分10
22秒前
顺利科研毕业完成签到,获得积分10
22秒前
胡杨柳完成签到,获得积分10
24秒前
zhaoxi完成签到 ,获得积分10
26秒前
26秒前
monster完成签到 ,获得积分10
27秒前
28秒前
隐形曼青应助筱如采纳,获得10
31秒前
张张发布了新的文献求助30
32秒前
稳重的白筠完成签到 ,获得积分10
32秒前
ink发布了新的文献求助30
32秒前
mingjie发布了新的文献求助10
32秒前
群群完成签到,获得积分20
33秒前
粽子完成签到,获得积分10
33秒前
34秒前
35秒前
量子星尘发布了新的文献求助10
38秒前
群群发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610291
求助须知:如何正确求助?哪些是违规求助? 4016305
关于积分的说明 12434932
捐赠科研通 3697878
什么是DOI,文献DOI怎么找? 2039077
邀请新用户注册赠送积分活动 1071968
科研通“疑难数据库(出版商)”最低求助积分说明 955614