Validation of early risk-prediction models for gestational diabetes based on clinical characteristics

医学 妊娠期糖尿病 体质指数 接收机工作特性 怀孕 队列 糖尿病 人口 产科 队列研究 病历 内科学 妊娠期 内分泌学 环境卫生 生物 遗传学
作者
Sébastien Thériault,Jean‐Claude Forest,Jacques Massé,Yves Giguère
出处
期刊:Diabetes Research and Clinical Practice [Elsevier]
卷期号:103 (3): 419-425 被引量:36
标识
DOI:10.1016/j.diabres.2013.12.009
摘要

Aims Gestational diabetes (GDM) is generally diagnosed late in pregnancy, precluding early preventive interventions. This study aims to validate, in a large Caucasian population of pregnant women, models based on clinical characteristics proposed in the literature to identify, early in pregnancy, those at high risk of developing GDM in order to facilitate follow up and prevention. Methods This is a cohort study including 7929 pregnant women recruited prospectively at their first prenatal visit. Clinical information was obtained by a self-administered questionnaire and extraction of data from the medical records. The performance of four proposed clinical risk-prediction models was evaluated for identifying women who developed GDM and those who required insulin therapy. Results The four models yielded areas under the receiver operating characteristic curve (AUC) between 0.668 and 0.756 for the identification of women who developed GDM, a performance similar to those obtained in the original studies. The best performing model, based on ethnicity, body-mass index, family history of diabetes and past history of GDM, resulted in sensitivity, specificity and AUC of 73% (66–79), 81% (80–82) and 0.824 (0.793–0.855), respectively, for the identification of GDM cases requiring insulin therapy. Conclusions External validation of four risk-prediction models based exclusively on clinical characteristics yielded a performance similar to those observed in the original studies. In our cohort, the strategy seems particularly promising for the early prediction of GDM requiring insulin therapy. Addition of recently proposed biochemical markers to such models has the potential to reach a performance justifying clinical utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘橘橘子皮完成签到 ,获得积分10
1秒前
1秒前
郭晓波完成签到,获得积分10
1秒前
朴素的狗完成签到,获得积分10
2秒前
所所应助ye采纳,获得10
2秒前
2秒前
3秒前
xusuizi发布了新的文献求助10
3秒前
妮妮发布了新的文献求助10
5秒前
Carkeke完成签到,获得积分10
8秒前
听曲散步完成签到,获得积分10
8秒前
汉堡包应助akakns采纳,获得10
10秒前
可爱的函函应助研友_5Zl9D8采纳,获得10
10秒前
14秒前
稳重帆布鞋完成签到,获得积分10
16秒前
16秒前
17秒前
Akim应助嗨JL采纳,获得10
17秒前
Flex完成签到,获得积分10
19秒前
田様应助duckweedyan采纳,获得10
19秒前
akakns发布了新的文献求助10
20秒前
我是老大应助大樗采纳,获得10
23秒前
23秒前
星辰大海应助esu采纳,获得10
25秒前
Kamal发布了新的文献求助10
25秒前
柏代桃发布了新的文献求助10
26秒前
29秒前
研友_IEEE快到碗里来完成签到,获得积分10
29秒前
香蕉觅云应助肚肚采纳,获得10
31秒前
小董完成签到,获得积分10
32秒前
32秒前
guoguo完成签到,获得积分10
33秒前
dong发布了新的文献求助10
34秒前
34秒前
34秒前
暮霭沉沉发布了新的文献求助10
36秒前
esu发布了新的文献求助10
36秒前
善学以致用应助咿呀咿呀采纳,获得10
39秒前
lzq发布了新的文献求助10
39秒前
桐桐应助dong采纳,获得10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304435
求助须知:如何正确求助?哪些是违规求助? 2938356
关于积分的说明 8488527
捐赠科研通 2612858
什么是DOI,文献DOI怎么找? 1426905
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647376