Validation of early risk-prediction models for gestational diabetes based on clinical characteristics

医学 妊娠期糖尿病 体质指数 接收机工作特性 怀孕 队列 糖尿病 人口 产科 队列研究 病历 内科学 妊娠期 内分泌学 遗传学 环境卫生 生物
作者
Sébastien Thériault,Jean‐Claude Forest,Jacques Massé,Yves Giguère
出处
期刊:Diabetes Research and Clinical Practice [Elsevier]
卷期号:103 (3): 419-425 被引量:36
标识
DOI:10.1016/j.diabres.2013.12.009
摘要

Aims Gestational diabetes (GDM) is generally diagnosed late in pregnancy, precluding early preventive interventions. This study aims to validate, in a large Caucasian population of pregnant women, models based on clinical characteristics proposed in the literature to identify, early in pregnancy, those at high risk of developing GDM in order to facilitate follow up and prevention. Methods This is a cohort study including 7929 pregnant women recruited prospectively at their first prenatal visit. Clinical information was obtained by a self-administered questionnaire and extraction of data from the medical records. The performance of four proposed clinical risk-prediction models was evaluated for identifying women who developed GDM and those who required insulin therapy. Results The four models yielded areas under the receiver operating characteristic curve (AUC) between 0.668 and 0.756 for the identification of women who developed GDM, a performance similar to those obtained in the original studies. The best performing model, based on ethnicity, body-mass index, family history of diabetes and past history of GDM, resulted in sensitivity, specificity and AUC of 73% (66–79), 81% (80–82) and 0.824 (0.793–0.855), respectively, for the identification of GDM cases requiring insulin therapy. Conclusions External validation of four risk-prediction models based exclusively on clinical characteristics yielded a performance similar to those observed in the original studies. In our cohort, the strategy seems particularly promising for the early prediction of GDM requiring insulin therapy. Addition of recently proposed biochemical markers to such models has the potential to reach a performance justifying clinical utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
西喜完成签到,获得积分10
刚刚
bkagyin应助jerseyxin采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
动听的寻芹完成签到,获得积分10
3秒前
小羊学学学完成签到 ,获得积分10
3秒前
loseyourself发布了新的文献求助10
3秒前
5秒前
亦天凛完成签到,获得积分10
6秒前
洁净思天完成签到,获得积分10
6秒前
6秒前
8秒前
粗暴的平凡完成签到,获得积分10
10秒前
sunny完成签到,获得积分10
10秒前
11秒前
忧郁的蟑螂王完成签到 ,获得积分10
11秒前
12秒前
13秒前
13秒前
牛牛发布了新的文献求助10
13秒前
liufighter发布了新的文献求助10
16秒前
采采完成签到,获得积分10
16秒前
OOO发布了新的文献求助10
17秒前
hhy驳回了乐乐应助
18秒前
DOODBYE发布了新的文献求助10
19秒前
19秒前
19秒前
斯文身影完成签到,获得积分10
19秒前
Lucas应助LiuRuizhe采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
西粤学发布了新的文献求助10
21秒前
avalanche应助ASDq采纳,获得10
23秒前
土豆味的薯条完成签到,获得积分10
23秒前
Owen应助怡兔采纳,获得30
26秒前
优雅含灵发布了新的文献求助10
26秒前
xxfsx应助斯文身影采纳,获得10
27秒前
笨笨蜜蜂发布了新的文献求助10
28秒前
28秒前
28秒前
lipanpan完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424665
求助须知:如何正确求助?哪些是违规求助? 4539081
关于积分的说明 14164862
捐赠科研通 4456109
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469