Validation of early risk-prediction models for gestational diabetes based on clinical characteristics

医学 妊娠期糖尿病 体质指数 接收机工作特性 怀孕 队列 糖尿病 人口 产科 队列研究 病历 内科学 妊娠期 内分泌学 遗传学 环境卫生 生物
作者
Sébastien Thériault,Jean‐Claude Forest,Jacques Massé,Yves Giguère
出处
期刊:Diabetes Research and Clinical Practice [Elsevier]
卷期号:103 (3): 419-425 被引量:36
标识
DOI:10.1016/j.diabres.2013.12.009
摘要

Aims Gestational diabetes (GDM) is generally diagnosed late in pregnancy, precluding early preventive interventions. This study aims to validate, in a large Caucasian population of pregnant women, models based on clinical characteristics proposed in the literature to identify, early in pregnancy, those at high risk of developing GDM in order to facilitate follow up and prevention. Methods This is a cohort study including 7929 pregnant women recruited prospectively at their first prenatal visit. Clinical information was obtained by a self-administered questionnaire and extraction of data from the medical records. The performance of four proposed clinical risk-prediction models was evaluated for identifying women who developed GDM and those who required insulin therapy. Results The four models yielded areas under the receiver operating characteristic curve (AUC) between 0.668 and 0.756 for the identification of women who developed GDM, a performance similar to those obtained in the original studies. The best performing model, based on ethnicity, body-mass index, family history of diabetes and past history of GDM, resulted in sensitivity, specificity and AUC of 73% (66–79), 81% (80–82) and 0.824 (0.793–0.855), respectively, for the identification of GDM cases requiring insulin therapy. Conclusions External validation of four risk-prediction models based exclusively on clinical characteristics yielded a performance similar to those observed in the original studies. In our cohort, the strategy seems particularly promising for the early prediction of GDM requiring insulin therapy. Addition of recently proposed biochemical markers to such models has the potential to reach a performance justifying clinical utilization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未央发布了新的文献求助10
1秒前
1秒前
小于发布了新的文献求助10
2秒前
Ava应助不学力学采纳,获得10
2秒前
郑板桥发布了新的文献求助10
3秒前
睡醒了发布了新的文献求助10
3秒前
刘易完成签到,获得积分10
4秒前
妩媚的海应助ddaizi采纳,获得10
4秒前
HY完成签到,获得积分10
4秒前
AA18236931952发布了新的文献求助10
4秒前
5秒前
小方发布了新的文献求助10
6秒前
Wdd完成签到,获得积分10
6秒前
dreamode完成签到,获得积分10
6秒前
8秒前
11秒前
12秒前
小蘑菇应助yinx采纳,获得10
13秒前
Accepted完成签到,获得积分10
13秒前
领导范儿应助典雅的俊驰采纳,获得10
14秒前
17秒前
17秒前
18秒前
18秒前
在水一方应助清爽的诗槐采纳,获得50
18秒前
今后应助睡醒了采纳,获得10
19秒前
123456发布了新的文献求助30
19秒前
cj发布了新的文献求助10
22秒前
aishangkeyan发布了新的文献求助10
23秒前
早晚餐完成签到,获得积分10
23秒前
夏以宁完成签到,获得积分10
25秒前
Redinn完成签到,获得积分10
25秒前
科研通AI2S应助明理的绮南采纳,获得10
26秒前
27秒前
5plusV发布了新的文献求助10
27秒前
昨叶何草完成签到,获得积分10
28秒前
青山完成签到 ,获得积分10
28秒前
乔宇航发布了新的文献求助10
28秒前
DNA完成签到,获得积分10
30秒前
潇洒平松完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537165
求助须知:如何正确求助?哪些是违规求助? 4624747
关于积分的说明 14592945
捐赠科研通 4565282
什么是DOI,文献DOI怎么找? 2502235
邀请新用户注册赠送积分活动 1480963
关于科研通互助平台的介绍 1452142