Validation of early risk-prediction models for gestational diabetes based on clinical characteristics

医学 妊娠期糖尿病 体质指数 接收机工作特性 怀孕 队列 糖尿病 人口 产科 队列研究 病历 内科学 妊娠期 内分泌学 环境卫生 生物 遗传学
作者
Sébastien Thériault,Jean‐Claude Forest,Jacques Massé,Yves Giguère
出处
期刊:Diabetes Research and Clinical Practice [Elsevier]
卷期号:103 (3): 419-425 被引量:36
标识
DOI:10.1016/j.diabres.2013.12.009
摘要

Aims Gestational diabetes (GDM) is generally diagnosed late in pregnancy, precluding early preventive interventions. This study aims to validate, in a large Caucasian population of pregnant women, models based on clinical characteristics proposed in the literature to identify, early in pregnancy, those at high risk of developing GDM in order to facilitate follow up and prevention. Methods This is a cohort study including 7929 pregnant women recruited prospectively at their first prenatal visit. Clinical information was obtained by a self-administered questionnaire and extraction of data from the medical records. The performance of four proposed clinical risk-prediction models was evaluated for identifying women who developed GDM and those who required insulin therapy. Results The four models yielded areas under the receiver operating characteristic curve (AUC) between 0.668 and 0.756 for the identification of women who developed GDM, a performance similar to those obtained in the original studies. The best performing model, based on ethnicity, body-mass index, family history of diabetes and past history of GDM, resulted in sensitivity, specificity and AUC of 73% (66–79), 81% (80–82) and 0.824 (0.793–0.855), respectively, for the identification of GDM cases requiring insulin therapy. Conclusions External validation of four risk-prediction models based exclusively on clinical characteristics yielded a performance similar to those observed in the original studies. In our cohort, the strategy seems particularly promising for the early prediction of GDM requiring insulin therapy. Addition of recently proposed biochemical markers to such models has the potential to reach a performance justifying clinical utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷艳的太君完成签到,获得积分10
1秒前
1秒前
科目三应助wwwww采纳,获得10
2秒前
2秒前
2秒前
3秒前
CH完成签到 ,获得积分10
3秒前
xiuxiu_27发布了新的文献求助10
4秒前
April发布了新的文献求助10
4秒前
打打应助核桃采纳,获得10
4秒前
4秒前
elena发布了新的文献求助10
4秒前
现代的战斗机完成签到,获得积分10
4秒前
刘星星发布了新的文献求助10
5秒前
萧秋灵完成签到,获得积分10
5秒前
5秒前
6秒前
YaoX完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
YE发布了新的文献求助10
7秒前
7秒前
8秒前
张肥肥完成签到 ,获得积分20
8秒前
明亮的斩关注了科研通微信公众号
8秒前
科研通AI5应助搞怪的人龙采纳,获得10
8秒前
9秒前
xiuxiu_27完成签到 ,获得积分10
9秒前
李健应助qym采纳,获得10
10秒前
风趣的爆米花完成签到,获得积分20
10秒前
韭菜发布了新的文献求助10
10秒前
10秒前
10秒前
yzxzdm完成签到 ,获得积分10
11秒前
小破仁666发布了新的文献求助10
11秒前
11秒前
英姑应助优秀的逊采纳,获得10
12秒前
ccc完成签到,获得积分20
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740