Validation of early risk-prediction models for gestational diabetes based on clinical characteristics

医学 妊娠期糖尿病 体质指数 接收机工作特性 怀孕 队列 糖尿病 人口 产科 队列研究 病历 内科学 妊娠期 内分泌学 遗传学 环境卫生 生物
作者
Sébastien Thériault,Jean‐Claude Forest,Jacques Massé,Yves Giguère
出处
期刊:Diabetes Research and Clinical Practice [Elsevier BV]
卷期号:103 (3): 419-425 被引量:36
标识
DOI:10.1016/j.diabres.2013.12.009
摘要

Aims Gestational diabetes (GDM) is generally diagnosed late in pregnancy, precluding early preventive interventions. This study aims to validate, in a large Caucasian population of pregnant women, models based on clinical characteristics proposed in the literature to identify, early in pregnancy, those at high risk of developing GDM in order to facilitate follow up and prevention. Methods This is a cohort study including 7929 pregnant women recruited prospectively at their first prenatal visit. Clinical information was obtained by a self-administered questionnaire and extraction of data from the medical records. The performance of four proposed clinical risk-prediction models was evaluated for identifying women who developed GDM and those who required insulin therapy. Results The four models yielded areas under the receiver operating characteristic curve (AUC) between 0.668 and 0.756 for the identification of women who developed GDM, a performance similar to those obtained in the original studies. The best performing model, based on ethnicity, body-mass index, family history of diabetes and past history of GDM, resulted in sensitivity, specificity and AUC of 73% (66–79), 81% (80–82) and 0.824 (0.793–0.855), respectively, for the identification of GDM cases requiring insulin therapy. Conclusions External validation of four risk-prediction models based exclusively on clinical characteristics yielded a performance similar to those observed in the original studies. In our cohort, the strategy seems particularly promising for the early prediction of GDM requiring insulin therapy. Addition of recently proposed biochemical markers to such models has the potential to reach a performance justifying clinical utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇的天蓝完成签到 ,获得积分10
1秒前
三条馋猫发布了新的文献求助10
1秒前
隐形书白发布了新的文献求助10
2秒前
loseyourself完成签到,获得积分10
2秒前
陈大大完成签到,获得积分10
3秒前
3秒前
负责的调料汁完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
倩Q完成签到,获得积分10
6秒前
搞怪莫茗发布了新的文献求助10
7秒前
石中酒完成签到 ,获得积分10
7秒前
Lucas应助顺心火龙果采纳,获得10
7秒前
无限数据线完成签到,获得积分10
9秒前
11秒前
小蘑菇应助等光来采纳,获得10
11秒前
乐乐应助奔波儿灞采纳,获得10
13秒前
AOPs完成签到,获得积分10
14秒前
欧维发布了新的文献求助10
14秒前
热爱科研的刘完成签到,获得积分10
16秒前
无辜的醉波完成签到,获得积分10
16秒前
大模型应助干姜采纳,获得10
17秒前
852应助隐形书白采纳,获得10
17秒前
17秒前
20秒前
ljs完成签到,获得积分10
21秒前
Yen发布了新的文献求助10
21秒前
今后应助vvvaee采纳,获得10
22秒前
22秒前
许起眸给许起眸的求助进行了留言
23秒前
楠LEE发布了新的文献求助10
24秒前
24秒前
梦回与她完成签到,获得积分10
27秒前
27秒前
FashionBoy应助一一采纳,获得30
28秒前
土豆教教主完成签到 ,获得积分10
29秒前
糕糕发布了新的文献求助10
29秒前
30秒前
JIE完成签到,获得积分10
31秒前
butaishao发布了新的文献求助10
31秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970008
求助须知:如何正确求助?哪些是违规求助? 3514711
关于积分的说明 11175563
捐赠科研通 3250077
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804931