重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Validation of early risk-prediction models for gestational diabetes based on clinical characteristics

医学 妊娠期糖尿病 体质指数 接收机工作特性 怀孕 队列 糖尿病 人口 产科 队列研究 病历 内科学 妊娠期 内分泌学 遗传学 环境卫生 生物
作者
Sébastien Thériault,Jean‐Claude Forest,Jacques Massé,Yves Giguère
出处
期刊:Diabetes Research and Clinical Practice [Elsevier]
卷期号:103 (3): 419-425 被引量:36
标识
DOI:10.1016/j.diabres.2013.12.009
摘要

Aims Gestational diabetes (GDM) is generally diagnosed late in pregnancy, precluding early preventive interventions. This study aims to validate, in a large Caucasian population of pregnant women, models based on clinical characteristics proposed in the literature to identify, early in pregnancy, those at high risk of developing GDM in order to facilitate follow up and prevention. Methods This is a cohort study including 7929 pregnant women recruited prospectively at their first prenatal visit. Clinical information was obtained by a self-administered questionnaire and extraction of data from the medical records. The performance of four proposed clinical risk-prediction models was evaluated for identifying women who developed GDM and those who required insulin therapy. Results The four models yielded areas under the receiver operating characteristic curve (AUC) between 0.668 and 0.756 for the identification of women who developed GDM, a performance similar to those obtained in the original studies. The best performing model, based on ethnicity, body-mass index, family history of diabetes and past history of GDM, resulted in sensitivity, specificity and AUC of 73% (66–79), 81% (80–82) and 0.824 (0.793–0.855), respectively, for the identification of GDM cases requiring insulin therapy. Conclusions External validation of four risk-prediction models based exclusively on clinical characteristics yielded a performance similar to those observed in the original studies. In our cohort, the strategy seems particularly promising for the early prediction of GDM requiring insulin therapy. Addition of recently proposed biochemical markers to such models has the potential to reach a performance justifying clinical utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FN_09发布了新的文献求助10
刚刚
1秒前
1秒前
Hello应助cat采纳,获得10
1秒前
1秒前
mmol发布了新的文献求助10
1秒前
HCCha发布了新的文献求助10
2秒前
dalian发布了新的文献求助10
2秒前
tp发布了新的文献求助10
2秒前
2秒前
XH完成签到,获得积分10
3秒前
3秒前
3秒前
蚊蚊爱读书应助quasar采纳,获得10
3秒前
无限行之完成签到,获得积分10
4秒前
lxy发布了新的文献求助10
4秒前
KevenDing完成签到,获得积分10
4秒前
浮游应助薛晓博采纳,获得10
5秒前
5秒前
星辰大海应助4123采纳,获得10
5秒前
Owen应助4123采纳,获得10
5秒前
传奇3应助4123采纳,获得10
5秒前
小马甲应助4123采纳,获得10
5秒前
6秒前
睡个大觉应助知足肠乐采纳,获得10
6秒前
锣大炮发布了新的文献求助10
6秒前
友好的凝旋完成签到,获得积分10
6秒前
椰子完成签到,获得积分20
7秒前
华仔应助dalian采纳,获得10
7秒前
庄建煌完成签到,获得积分10
7秒前
库儿拉索发布了新的文献求助10
7秒前
kaw发布了新的文献求助20
7秒前
小蘑菇应助清辰子丶采纳,获得10
7秒前
顾矜应助WA采纳,获得10
8秒前
8秒前
8秒前
00完成签到,获得积分10
8秒前
8秒前
思源应助冰淇淋采纳,获得10
8秒前
sci大户发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466380
求助须知:如何正确求助?哪些是违规求助? 4570254
关于积分的说明 14324125
捐赠科研通 4496749
什么是DOI,文献DOI怎么找? 2463571
邀请新用户注册赠送积分活动 1452461
关于科研通互助平台的介绍 1427543