CX3CL1型
CX3CR1型
趋化因子
细胞生物学
生物
体内
绿色荧光蛋白
趋化因子受体
受体
分子生物学
生物化学
基因
遗传学
作者
Ki Wook Kim,Alexandra Vallon-Eberhard,Ehud Zigmond,Júlia Farache,Elias Shezen,Guy Shakhar,Andreas Ludwig,Sérgio A. Lira,Steffen Jung
出处
期刊:Blood
[American Society of Hematology]
日期:2011-11-24
卷期号:118 (22): e156-e167
被引量:226
标识
DOI:10.1182/blood-2011-04-348946
摘要
The CX3C chemokine family is composed of only one member, CX3CL1, also known as fractalkine, which in mice is the sole ligand of the G protein-coupled, 7-transmembrane receptor CX3CR1. Unlike classic small peptide chemokines, CX3CL1 is synthesized as a membrane-anchored protein that can promote integrin-independent adhesion. Subsequent cleavage by metalloproteases, either constitutive or induced, can generate shed CX3CL1 entities that potentially have chemoattractive activity. To study the CX3C interface in tissues of live animals, we generated transgenic mice (CX3CL1cherry:CX3CR1gfp), which express red and green fluorescent reporter genes under the respective control of the CX3CL1 and CX3CR1 promoters. Furthermore, we performed a structure/function analysis to differentiate the in vivo functions of membrane-tethered versus shed CX3CL1 moieties by comparing their respective ability to correct established defects in macrophage function and leukocyte survival in CX3CL1-deficient mice. Specifically, expression of CX3CL1(105Δ), an obligatory soluble CX3CL1 isoform, reconstituted the formation of transepithelial dendrites by intestinal macrophages but did not rescue circulating Ly6Clo CX3CR1hi blood monocytes in CX3CR1gfp/gfp mice. Instead, monocyte survival required the full-length membrane-anchored CX3CL1, suggesting differential activities of tethered and shed CX3CL1 entities.
科研通智能强力驱动
Strongly Powered by AbleSci AI