光致发光
带隙
材料科学
凝聚态物理
光谱学
兴奋剂
重整化
宽禁带半导体
分析化学(期刊)
光电子学
化学
物理
色谱法
量子力学
作者
Masanobu Yoshikawa,M. Kunzer,J. Wagner,H. Obloh,P. Schlotter,Richard Schmidt,N. Herres,U. Kaufmann
摘要
We have studied band-gap renormalization and band filling in Si-doped GaN films with free-electron concentrations up to 1.7×1019 cm−3, using temperature-dependent photoluminescence (PL) spectroscopy. The low-temperature (2 K) PL spectra showed a line-shape characteristic for momentum nonconserving band-to-band recombination. The energy downshift of the low-energy edge of the PL line with increasing electron concentration n, which is attributed to band-gap renormalization (BGR) effects, could be fitted by a n1/3 power law with a BGR coefficient of −4.7×10−8 eV cm. The peak energy of the room-temperature band-to-band photoluminescence spectrum was found to decrease as the carrier concentration increases up to about 7×1018 cm−3, followed by a high-energy shift upon further increasing carrier concentration, due to the interplay between the BGR effects and band filling. The room-temperature PL linewidth showed a monotonic increase with carrier concentration, which could be described by a n2/3 power-law dependence.
科研通智能强力驱动
Strongly Powered by AbleSci AI