边际结构模型
混淆
因果推理
观察研究
估计员
反概率
计量经济学
边际模型
推论
因果模型
班级(哲学)
统计
数学
计算机科学
回归分析
贝叶斯概率
人工智能
后验概率
作者
James M. Robins,Miguel A. Hernán,Babette Brumback
出处
期刊:Epidemiology
[Ovid Technologies (Wolters Kluwer)]
日期:2000-09-01
卷期号:11 (5): 550-560
被引量:4922
标识
DOI:10.1097/00001648-200009000-00011
摘要
In observational studies with exposures or treatments that vary over time, standard approaches for adjustment of confounding are biased when there exist time-dependent confounders that are also affected by previous treatment. This paper introduces marginal structural models, a new class of causal models that allow for improved adjustment of confounding in those situations. The parameters of a marginal structural model can be consistently estimated using a new class of estimators, the inverse-probability-of-treatment weighted estimators.
科研通智能强力驱动
Strongly Powered by AbleSci AI