Nanotextured superhydrophobic electrodes enable detection of attomolar-scale DNA concentration within a droplet by non-faradaic impedance spectroscopy

生物分子 纳米技术 微流控 检出限 介电谱 生物传感器 材料科学 电极 电阻抗 响应时间 光电子学 化学 电化学 计算机科学 色谱法 电气工程 计算机图形学(图像) 工程类 物理化学
作者
Aida Ebrahimi,Piyush Dak,Eric Salm,Susmita Dash,Suresh V. Garimella,Rashid Bashir,Ashraful Alam
出处
期刊:Lab on a Chip [Royal Society of Chemistry]
卷期号:13 (21): 4248-4248 被引量:79
标识
DOI:10.1039/c3lc50517k
摘要

Label-free, rapid detection of biomolecules in microliter volumes of highly diluted solutions (sub-femtomolar) is of essential importance for numerous applications in medical diagnostics, food safety, and chem-bio sensing for homeland security. At ultra-low concentrations, regardless of the sensitivity of the detection approach, the sensor response time is limited by physical diffusion of molecules towards the sensor surface. We have developed a fast, low cost, non-faradaic impedance sensing method for detection of synthetic DNA molecules in DI water at attomolar levels by beating the diffusion limit through evaporation of a micro-liter droplet of DNA on a nanotextured superhydrophobic electrode array. Continuous monitoring of the impedance of individual droplets as a function of evaporation time is exploited to dramatically improve the sensitivity and robustness of detection. Formation of the nanostructures on the electrode surface not only increases the surface hydrophobicity, but also allows robust pinning of the droplet contact area to the sensor surface. These two features are critical for performing highly stable impedance measurements as the droplet evaporates. Using this scheme, the detection limit of conventional non-faradaic methods is improved by five orders of magnitude. The proposed platform represents a step-forward towards realization of ultra-sensitive lab-on-chip biomolecule detectors for real time point-of-care application. Further works are however needed to ultimately realize the full potential of the proposed approach to appraise biological samples in complex buffer solutions rather than in DI water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小龅牙吖完成签到,获得积分10
1秒前
ding应助叁月二采纳,获得10
1秒前
黄芩完成签到 ,获得积分10
2秒前
茴茴完成签到 ,获得积分10
2秒前
smiling发布了新的文献求助10
2秒前
整齐小猫咪完成签到,获得积分10
2秒前
2秒前
火山上的鲍师傅完成签到,获得积分10
5秒前
6秒前
程哲瀚完成签到,获得积分10
8秒前
浮光完成签到,获得积分10
8秒前
小猛哥完成签到,获得积分10
8秒前
钰宁完成签到,获得积分10
9秒前
jiangcai完成签到,获得积分10
10秒前
dssouc发布了新的文献求助10
10秒前
呵呵呵呵完成签到,获得积分10
10秒前
JamesPei应助苹果发夹采纳,获得10
11秒前
小化化爱学习完成签到,获得积分10
11秒前
柳煜城完成签到,获得积分10
12秒前
负数完成签到,获得积分10
13秒前
shuzi发布了新的文献求助10
13秒前
14秒前
Brendan完成签到,获得积分10
14秒前
14秒前
ll2925203完成签到,获得积分10
14秒前
mcl关闭了mcl文献求助
14秒前
东耦完成签到,获得积分10
15秒前
15秒前
思源应助小猛哥采纳,获得10
15秒前
苹果小蜜蜂完成签到,获得积分10
16秒前
whyme完成签到,获得积分10
16秒前
lily完成签到 ,获得积分10
17秒前
Dragon完成签到 ,获得积分10
17秒前
yangzhang发布了新的文献求助10
19秒前
Bailan完成签到,获得积分10
20秒前
MY发布了新的文献求助10
20秒前
haohao完成签到,获得积分10
20秒前
布布完成签到,获得积分10
20秒前
朴素代芙完成签到,获得积分10
22秒前
zzzz完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259