A Method of “Exact” Numerical Differentiation for Error Elimination in Finite-Element-Based Semi-Analytical Shape Sensitivity Analyses*

有限元法 数值微分 数学 刚度矩阵 标量(数学) 数值分析 应用数学 灵敏度(控制系统) 混合有限元法 刚度 基质(化学分析) 简单(哲学) 数学分析 数学优化 几何学 结构工程 工程类 哲学 认识论 复合材料 材料科学 电子工程
作者
Niels Olhoff,John Rasmussen,Erik Lund
出处
期刊:Mechanics of Structures and Machines [Informa]
卷期号:21 (1): 1-66 被引量:102
标识
DOI:10.1080/08905459308905180
摘要

ABSTRACT The traditional, simple numerical differentiation of finite-element stiffness matrices by a forward difference scheme is the source of severe error problems that have been reported recently for certain problems of finite-element-based, semi-analytical shape design sensitivity analysis. In order to develop a method for elimination of such errors, without a sacrifice of the simple numerical differentiation and other main advantages of the semi-analytical method, the common mathematical structure of a broad range of finite-element stiffness matrices is studied in this paper. This study leads to the result that element stiffness matrices can generally be expressed in terms of a class of special scalar functions and a class of matrix functions of shape design variables that are defined such that the members of the classes admit “exact” numerical differentiation (exact up to round-off error) by means of very simple correction factors to upgrade standard computationally inexpensive first-order finite differences to “exact” numerical derivatives with respect to shape design variables. The correction factors can be easily computed once and for all as an initial step of the sensitivity analysis. Application of this method eliminates frequently encountered problems of severe dependence of semi-analytical design sensitivities on the size of perturbations of design variables and on finite-element mesh size and refinement, among other factors. The results are equivalent to those that would be obtained by numerical evaluation of corresponding analytical design sensitivities. However, the method is much more problem-independent and is easier to implement than the analytical method. Thus, it is shown in this paper that the new approach to semi-analytical shape sensitivity analysis is easily implemented as an integral part of finite-element analysis. The method of error elimination by “exact” numerical differentiation can be implemented even in connection with existing computer codes for semi-analytical sensitivity analysis, where subroutines for computation of element stiffness matrices are available only in the form of black-box routines. The applicability of the method presented is demonstrated for a broad class of commonly used finite elements. It is also shown that the method is compatible with common methods of design boundary parametrization based on master node techniques. Four numerical examples are presented to illustrate and discuss capabilities of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
AAA1798发布了新的文献求助10
2秒前
2秒前
wanci应助难过千易采纳,获得10
3秒前
刘光正完成签到,获得积分10
4秒前
善学以致用应助gxmu6322采纳,获得10
5秒前
漫步云端发布了新的文献求助10
5秒前
CartGo发布了新的文献求助10
6秒前
Ava应助AJJACKY采纳,获得10
6秒前
老迟到的沛萍关注了科研通微信公众号
7秒前
7秒前
无色热带鱼完成签到,获得积分10
9秒前
打打应助可乐不可口采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
端庄的正豪完成签到,获得积分20
10秒前
田様应助Tsui采纳,获得10
11秒前
王杰完成签到,获得积分20
12秒前
12秒前
13秒前
14秒前
14秒前
15秒前
英吉利25发布了新的文献求助10
15秒前
16秒前
好运连连完成签到 ,获得积分10
16秒前
17秒前
17秒前
可乐不可口完成签到,获得积分20
19秒前
半糖发布了新的文献求助10
19秒前
sunny完成签到,获得积分10
19秒前
20秒前
盛清让发布了新的文献求助10
20秒前
饱满南松发布了新的文献求助10
20秒前
InaZheng发布了新的文献求助30
21秒前
科目三应助SamYang采纳,获得10
21秒前
21秒前
CartGo完成签到,获得积分10
22秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975378
求助须知:如何正确求助?哪些是违规求助? 3519775
关于积分的说明 11199621
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798124
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305