A Method of “Exact” Numerical Differentiation for Error Elimination in Finite-Element-Based Semi-Analytical Shape Sensitivity Analyses*

有限元法 数值微分 数学 刚度矩阵 标量(数学) 数值分析 应用数学 灵敏度(控制系统) 混合有限元法 刚度 基质(化学分析) 简单(哲学) 数学分析 数学优化 几何学 结构工程 工程类 哲学 认识论 复合材料 材料科学 电子工程
作者
Niels Olhoff,John Rasmussen,Erik Lund
出处
期刊:Mechanics of Structures and Machines [Informa]
卷期号:21 (1): 1-66 被引量:102
标识
DOI:10.1080/08905459308905180
摘要

ABSTRACT The traditional, simple numerical differentiation of finite-element stiffness matrices by a forward difference scheme is the source of severe error problems that have been reported recently for certain problems of finite-element-based, semi-analytical shape design sensitivity analysis. In order to develop a method for elimination of such errors, without a sacrifice of the simple numerical differentiation and other main advantages of the semi-analytical method, the common mathematical structure of a broad range of finite-element stiffness matrices is studied in this paper. This study leads to the result that element stiffness matrices can generally be expressed in terms of a class of special scalar functions and a class of matrix functions of shape design variables that are defined such that the members of the classes admit “exact” numerical differentiation (exact up to round-off error) by means of very simple correction factors to upgrade standard computationally inexpensive first-order finite differences to “exact” numerical derivatives with respect to shape design variables. The correction factors can be easily computed once and for all as an initial step of the sensitivity analysis. Application of this method eliminates frequently encountered problems of severe dependence of semi-analytical design sensitivities on the size of perturbations of design variables and on finite-element mesh size and refinement, among other factors. The results are equivalent to those that would be obtained by numerical evaluation of corresponding analytical design sensitivities. However, the method is much more problem-independent and is easier to implement than the analytical method. Thus, it is shown in this paper that the new approach to semi-analytical shape sensitivity analysis is easily implemented as an integral part of finite-element analysis. The method of error elimination by “exact” numerical differentiation can be implemented even in connection with existing computer codes for semi-analytical sensitivity analysis, where subroutines for computation of element stiffness matrices are available only in the form of black-box routines. The applicability of the method presented is demonstrated for a broad class of commonly used finite elements. It is also shown that the method is compatible with common methods of design boundary parametrization based on master node techniques. Four numerical examples are presented to illustrate and discuss capabilities of the method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遇见多欢喜完成签到,获得积分10
刚刚
1秒前
leiyuekai完成签到,获得积分10
1秒前
Tiger完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
caitSith发布了新的文献求助10
3秒前
5秒前
在水一方应助胡图图采纳,获得10
5秒前
leiyuekai发布了新的文献求助10
5秒前
屿鑫完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
Jian完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
JJ索发布了新的文献求助10
10秒前
科目三应助yutian采纳,获得10
11秒前
SI完成签到 ,获得积分10
11秒前
多情雨灵发布了新的文献求助10
11秒前
玉玉完成签到,获得积分10
12秒前
sa发布了新的文献求助10
12秒前
冷傲的罡发布了新的文献求助10
13秒前
Jian发布了新的文献求助10
13秒前
越越发布了新的文献求助10
14秒前
14秒前
16秒前
pancake发布了新的文献求助30
16秒前
16秒前
16秒前
cicytjsxjr发布了新的文献求助10
17秒前
科研通AI6.1应助娜娜采纳,获得10
17秒前
风汐5423完成签到,获得积分10
18秒前
21秒前
hotongue发布了新的文献求助10
22秒前
23秒前
Criminology34应助JJ索采纳,获得10
25秒前
安详发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896